数值计算课程设计方案矩阵特征值与特征向量计算(共29页).doc

上传人:飞****2 文档编号:14960044 上传时间:2022-05-09 格式:DOC 页数:29 大小:625.50KB
返回 下载 相关 举报
数值计算课程设计方案矩阵特征值与特征向量计算(共29页).doc_第1页
第1页 / 共29页
数值计算课程设计方案矩阵特征值与特征向量计算(共29页).doc_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《数值计算课程设计方案矩阵特征值与特征向量计算(共29页).doc》由会员分享,可在线阅读,更多相关《数值计算课程设计方案矩阵特征值与特征向量计算(共29页).doc(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上矩阵地特征值与特征向量地计算摘 要矩阵是高等代数学中地常见工具,也常见于分析等学科中.在中,矩阵于电路学、和中都有应用;中,制作也需要用到矩阵. 矩阵地运算是领域地重要问题.将为简单矩阵地组合可以在理论和实际应用上简化矩阵地运算.b5E2R。在本论文中,我们主要讨论矩阵地特征值和特征向量地计算,我们知道,有很多现实中地问题都可以用到矩阵特征值与特征向量计算地知识,比如,在物理、力学和工程技术方面有很多地应用,并且发挥着极其重要地作用.因为这些问题都可归结为求矩阵特征值地问题,具体到一些具体问题,如振动问题,物理中某些临界值地确定问题以及一些理论物理中地问题.p1Ean

2、。在本论文中,我们主要介绍求矩阵地特征值与特征向量地一些原理和方法,原理涉及高得代数中矩阵地相关定理,方法主要介绍冥法及反冥法,Jacobi方法和QR算法,并利用MATLAB,VC等软件编写相关算法地程序来求解相关问题,加以验证.DXDiT。关键词:矩阵;特征值;特征向量;冥法;反冥法;Jacobi方法;QR算法;VC软件;MATLAB软件THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIXRTCrp。ABSTRACTThe matrix is an usual tool in Advanced Algebra, which also

3、 used by applied mathematics such as Statistics Analysis. In Physics, we can see the important usage of matrix including Electric Circuits, Mechanics, Optics and Quantum Physics. Making three dimension needs matrix in Computer. The arithmetic of matrix is a very important part in Numerical Analysis.

4、 It can simplify the calculation of matrix that we decompose the matrix into several simple parts.5PCzV。In this thesis, we mainly talk about the calculation of eigenvalue and eigenvector of matrix. As we all know, there are lots of realistic problems which need the knowledge of the thesis to solve.

5、We can see the important usage of matrix including Electric Circuits, Mechanics, Optics and Quantum Physics. It play an important role in these problems inferred above. Because these problems can regarded as the calculation of eigenvalue and eigenvector of matrix, like vibrating problems and critica

6、l value problems and so on.jLBHr。We primarily introduce the principle and approach of the calculation of eigenvalue and eigenvector of matrix that infer the relevant principle in Advanced Algebra. We mainly talk about iteration methods, Jacobi method and QR method by using MATLAB.xHAQX。Key words:Mat

7、rix;Eigenvalue;Eigenvector;Iteration methods; Jacobi method;LDAYt。 QR method;MATLAB目 录1 引言.1Zzz6Z。2 相关定理.1dvzfv。3 符号说明.2rqyn1。4 冥法及反冥法.2Emxvx。 4.1冥法.3SixE2。 4.2反冥法.86ewMy。5 QR算法.14kavU4。参考文献.18y6v3A。 附录.19M2ub6。专心-专注-专业1 引言在本论文中,我们主要讨论矩阵地特征值和特征向量地计算,我们知道,有很多现实中地问题都可以用到矩阵特征值与特征向量计算地知识,比如,在物理、力学和工程技术方

8、面有很多地应用,并且发挥着极其重要地作用.因为这些问题都可归结为求矩阵特征值地问题,具体到一些具体问题,如振动问题,物理中某些临界值地确定问题以及一些理论物理中地问题.0YujC。在本论文中,我们主要介绍求矩阵地特征值与特征向量地一些原理和方法,原理涉及高得代数中矩阵地相关定理,方法主要介绍冥法及反冥法,Jacobi方法和QR算法,并利用MATLAB,VC等软件编写相关算法地程序来求解相关问题,加以验证.eUts8。2 相关定理定理2.1 如果是矩阵A地特征值,则有定理2.2 设A与B为相似矩阵,则 A与B有相同地特征值;若是地一个特征向量,则是A地特征向量定理2.3 设,则A地每一个特征值必

9、属于下述某个圆盘之中:定义2.1 设A是n阶是对称矩阵,对于任意非零向量x,称为对应于向量x地Rayleigh商.定理2.4 设为对称矩阵(其特征值次序记作,对应地特征向量组成规范化正交组,即),则 (对于任何非零向量x);3 符号说明A:n阶矩阵B:n阶矩阵I:n阶单位阵:矩阵特征值x:实数域上地n维向量:实数域上地n维向量:实属上地规范化向量4冥法及反冥法4.1 冥法幂法是一种计算矩阵地主特征值地一种迭代法,它最大优点是方法简单,适合于计算大型稀疏矩阵地主特征值.设,其特征值为,对应特征向量为即且线性无关.设特征值满足:(即为强占优) (4.1.1)幂法地基本思想,是任取一个非零初始向量,

10、由矩阵地乘幂构造一向量序列 (4.1.2)称为迭代向量.下面来分折.由设为中一个基本,于是,有展开式 (且设)且有(4.1.3 )由假设(4.1.1)式,则即且收敛速度由比值确定.且有(41.4)这说明,当充分大时,有,或越来越接近特征向量.下面考虑主特征值地计算.用表示地第个分量,考虑相邻迭代向量地分量地比值.从而是 (4.1.5)说明相邻迭代向量分量地比值收敛到主特征,且收敛速度由比值来度量,越小收敛越快,但越小收敛越快,但,而接近于1时,收敛可能很慢.sQsAE。定理4.1 (1)设n个线性无关地特征向量:(2)设特征值满足(3)幂法:)则 (1);(2) 如果主特征值为实地重根,即有又

11、设A有个线性无关地特征向量,其中对于任意初始向量则由幂法有 且有 (设不全为零)由此,当充分大时,接近于与对应地特征向量地某个线性组合.应用幂法计算地主特征值及对应地特征向量时,如果),迭代向量地各个不等于零地分量将随而趋于无究(或趋于零),这样电算时就可能溢出.为此,就南非要将迭代向量加以规范化.GMsIa。设有非零向量其中表示向量绝对值最大地元素,即如果有草药则其中为所有绝对值最大地分量中最小指标. 显然有下面性性质: 设,则 在定理4.1条件下幂法可改进为: 任取初始向量. 迭代: 规范化:,(4.16) 于是,由上式产生迭代向量序列及规范化向量且改进幂法计算公式为: 设 对于 (4.1

12、.7) 下面考查与计算地关系. 由 且有 (4.1.8) 其中 (1) 考查规范化向量序列:由(4.1.7)及(4.1.8)式,则有(2) 考查迭代向量序列:于是, 定理 (改进幂法)(1) 设有个线性无关特征向量;(2) 设特征值满足且 (3)由改进幂法得到(4.1.7)式),则有 (a) (b)且收敛速度由比值确定.实现幂法,每迭代一次主要是计算一次矩阵乘向量,可编一个子程序.例1.用MATLAB编写冥法程序求矩阵主特征值及近似主特征量用幂法计算下列矩阵地主特征值和对应地特征向量地近似向量,精度.并把输出地结果真实结果进行比较.解输入MATLAB程序B=1 2 3;2 1 3;3 3 6;

13、 V0=1,1,1; k,lambda,Vk,Wc=mifa(B,V0,0.00001,100), V,D = eig (B), TIrRG。Dzd=max(diag(D), wuD= abs(Dzd- lambda), wuV=V(:,3)./Vk,7EqZc。运行后屏幕显示结果请注意:迭代次数k,主特征值地近似值lambda,主特征向量地近似向量Vk,相邻两次迭代地误差Wc如下:lzq7I。k = lambda = Wc = Dzd = wuD =zvpge。 3 9 0 9 0NrpoJ。Vk = wuV = 0.000 0.773 0.000 0.773 1.000 0.773V =

14、0.655 0.963 0.3861nowf。 -0.655 0.963 0.386fjnFL。 0 -0.963 0.7734.2 反冥法及位移反冥法(1) 反幂法可用来计算矩阵按模最小地特征值及对应地特征向量.设为非厅异矩阵,特征值满足对应特征向量为线性无关,则特征求值为特征向量为因此计算地按模最小地特征值地部题就是计算按模最大地特征值部题.对于应用幂法迭代(称为反幂法),可求矩阵地主特征值.反幂法迭代公式:任取初始向量,1,2, (4.2.1)其中迭代向量可通过解方程组求得:如果个线性无关特征向量且特征值满足:则由反幂法(2.11)构造地向量序列满足且收敛速度由比值确定.(2)应用反幂法

15、求一个地似特征值对应地特征向量.设已知地特征值地一个近似值(通常是用其它方法得到),现要求对应地特征向量(近似),在反幂法中也可用原点平移法来加速收敛.tfnNh。如果存在,显然,特征值为对应地特征向量.现取(但不能取),且设与其它特征值是分离地,即即 说明是地主特征值.现对应用幂法得到反幂法计算公式:取初始向量 (4.2.2)与定理8证明类似,可得下述结果.定理10 (1)设有个线性无关特征向量即.(2)取(为特征值一个近似值),设存在且则由反幂法迭代公式(2,12)构造向量序列满足:或 且收敛速度由比值确定.由定理可知,反幂法计算公式(4.2.2)可用计算特征向量.选择是地一个近似且地特征

16、值分离情况较好,一般很小,所以迭代过程收敛较快,同时改进特征值.HbmVN。反幂法迭代公式中是以通过解方程组求得.为了节省计算量,可先将进行三角分解.其中为置换阵,于是每次迭代求相当于求解两个三角形方程组可按下述方法取,即选使回代求解即求得.反幂法计算公式:1分解计算,且保存及信息2反幂法迭代(1)(2) 1)求求 2) 3)对于计算对称三对角阵,或计算Hessenberg阵对应于一个给定地近似特征值地特征向量,反幂 法是一个有效方法.V7l4j。例2 .用反幂法计算对应于近似特征值(精确特征值为)地特征向量 解 取,用部分选主元分解法实现,其中(1)求解(2)求解(3)求解特征向量(真解)是

17、由此,相当好地近似.例3.用原点位移反幂法地迭代公式,根据给定地下列矩阵地特征值地初始值,计算与对应地特征向量地近似向量,精确到0.000 1.83lcP。,解输入MATLAB程序 A=1 -1 0;-2 4 -2;0 -1 2;V0=1,1,1;k,lambda,Vk,Wc=ydwyfmf(A,V0,0.2,0.0001,10000)运行后屏幕显示结果请注意:因为A-aE地各阶主子式都不等于零,所以A-aE能进行LU分解.A-aE地秩R(A-aE)和各阶顺序主子式值hl、迭代次数k,按模最小特征值地近似值lambda,特征向量地近似向量Vk,相邻两次迭代地误差Wc如下:mZkkl。k = l

18、ambda = Wc = hl = 3 0.2384 1.0213e-007 0.8000 1.0400 0.2720AVktR。Vk = V = D = 1.0000 -0.2424 -1.0000 -0.5707 5.1249 0 0ORjBn。 0.7616 1.0000 -0.7616 0.3633 0 0.2384 02MiJT。 0.4323 -0.3200 -0.4323 1.0000 0 0 1.6367gIiSp。例4.用原点位移反幂法地迭代公式(5.28),计算地分别对应于特征值地特征向量地近似向量,相邻迭代误差为0.001.将计算结果与精确特征向量比较.uEh0U。解计算

19、特征值对应地特征向量地近似向量.输入MATLAB程序 A=0 11 -5;-2 17 -7;-4 26 -10;V0=1,1,1;k,lambda,Vk,Wc= ydwyfmf(A,V0,1.001, 0.001,100),V,D=eig(A);Dzd=min(diag(D), wuD= abs(Dzd- lambda),VD=V(:,1),wuV=V(:,1)./Vk,运行后屏幕显示结果请注意:因为A-aE地各阶主子式都不等于零,所以A-aE能进行LU分解.A-aE地秩R(A-aE)和各阶顺序主子式值hl、迭代次数k,按模最小特征值地近似值lambda,特征向量地近似向量Vk,相邻两次迭代地

20、误差Wc如下:IAg9q。hl = -1.000 5.000 -0.000WwghW。k = lambda = RA1 = 5 1.000 -0.000Vk = VD = wuV =asfps。 -0.000 -0.386 0.773ooeyY。 -0.000 -0.386 0.773BkeGu。 -1.000 -0.773 0.773PgdO0。Wc = Dzd = wuD =3cdXw。 1.5562e-009 1.000 0.000 h8c52。从输出地结果可见,迭代5次,特征向量地近似向量地相邻两次迭代地误差Wc1.379 e-009,由wuV可以看出,=Vk与VD地对应分量地比值相等

21、.特征值地近似值lambda1.002与初始值1.001地绝对误差为0.001,而与地绝对误差为0.002,其中v4bdy。,.5QR方法用最末元位移QR方法求下列实对称矩阵地全部近似特征值,并将计算结果与全部真特征值比较.其中精度为解 首先保存用最末元位移QR方法求实对称矩阵全部特征值地MATLAB主程序为M文件,取名为qr4.m.在MATLAB工作窗口输入程序J0bm4。 A=5 2 2 1;2 -4 1 1;2 1 3 1;1 1 1 2; tzg=qr4(A,5,100)XVauA。运行后屏幕显示结果请注意:下面地i表示求第i个特征值,k是迭代次数,sk是原点位移量, Bk=Ak-sk

22、*eye(n),Qk和Rk是Bk地QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:bR9C6。i = 3tzgk = -4.872k = 5sk = -4.637B = 7.142tzgk = 7.142请注意:n阶实对称矩阵A地全部真特征值lamoda和至少含t个有效数字地近似特征值tzg如下:lamoda = -4.366 1.184 2.000 7.181tzg = -4.872 1.730 2.000 7.142用求根位移QR方法求实对称矩阵全部特征值,精度为.并将计算结果与全部真特征值比较.其中解 首先把用求根位移QR方法求实对称矩阵全部特征值地MATLAB主程序保存为M文件

23、,命名为qr8.m.然后在工作窗口输入MATLAB程序pN9LB。 A=5 2 2 1;2 -3 1 1;2 1 3 1;1 1 1 2; tzg=qr8(A,0.0001,100)运行后屏幕显示结果如下:请注意:下面地i表示求第i个特征值,如果迭代矩阵Ak地阶数2,且m 阶矩阵Ak地m行第m-1列地元近似等于零.则原n阶矩阵A地第j个特征值j=skj,j=1,2,.,n-2;下面地矩阵Ak降一阶.DJ8T7。i = 3tzgk = 2.0004Ak = 4.8235 -2.0282 -2.0282 -5.2085如果迭代矩阵Ak地阶数=2,则原n阶矩阵A地最后两个特征值j=k+xj,k=n-

24、2,j=1,2.x1 = 5.2180x2 = -5.6030tzg1 = 7.2183tzg2 = -3.6027请注意:n阶实对称矩阵A地全部真特征值lamoda和精度为jd地近似特征值tzg如下:lamoda = -3.6027 1.3843 2.0000 7.2183tzg = -3.6027 1.3843 2.0004 7.2183参 考 文 献1 姜启源,谢金星,叶俊编数学模型(第三版)M北京:高等教育出版社,2005:1-202.QF81D。2 王建卫,曲中水 凌滨编著. MATLAB 7.X 程序设计M. 北京:中国水利水电出版社,2007:55-80.4B7a9。3 李庆扬,

25、王能超,易大义编著.数值分析(第四版)M. 武汉:华中科技大学出版社,2006:219-245.ix6iF。4 王萼芳编著.高等代数M. 北京:高等教育出版社,2009.161-210.5 张军编著.数值计算M.北京:清华大学出版社,2008.7.1-200.6 莫勒编著.MATLAB数值计算M.北京:机械工业出版社,2006.6.1-150.附 录程序1: 用幂法计算矩阵地主特征值和对应地特征向量地MATLAB主程序function k,lambda,Vk,Wc=mifa(A,V0,jd,max1)lambda=0;k=1;Wc =1; ,jd=jd*0.1;state=1; V=V0;wh

26、ile(kjd)state=1;endk=k+1;Wc=Wc;endif(Wc=jd)disp(请注意:迭代次数k,主特征值地近似值lambda,主特征向量地近似向量Vk,相邻两次迭代地误差Wc如下:) Kp5zH。elsedisp(请注意:迭代次数k已经达到最大迭代次数max1,主特征值地迭代值lambda,主特征向量地迭代向量Vk,相邻两次迭代地误差Wc如下:) Yl4Hd。endVk=V;k=k-1;Wc;程序2.用原点位移反幂法计算矩阵地特征值和对应地特征向量地MATLAB主程序1function k,lambdan,Vk,Wc=ydwyfmf(A,V0,jlamb,jd,max1)c

27、h4PJ。n,n=size(A); A1=A-jlamb*eye(n); jd= jd*0.1;RA1=det(A1); qd3Yf。if RA1=0disp(请注意:因为A-aE地n阶行列式hl等于零,所以A-aE不能进行LU分解.)returnendlambda=0;if RA1=0for p=1:nh(p)=det(A1(1:p, 1:p);endhl=h(1:n);for i=1:nif h(1,i)=0disp(请注意:因为A-aE地r阶主子式等于零,所以A-aE不能进行LU分解.) returnendend if h(1,i)=0 disp(请注意:因为A-aE地各阶主子式都不等于

28、零,所以A-aE能进行LU分解.)k=1;Wc =1;state=1; Vk=V0;while(kjd)state=1;endk=k+1;%Vk=Vk2,mk=mk1,endif(Wc=jd)disp(A-aE地秩R(A-aE)和各阶顺序主子式值hl、迭代次数k,按模最小特征值地近似值lambda,特征向量地近似向量Vk,相邻两次迭代地误差Wc如下:) S42eh。elsedisp(A-aE地秩R(A-aE)和各阶顺序主子式值hl、迭代次数k已经达到最大迭代次数max1,按模最小特征值地迭代值lambda,特征向量地迭代向量Vk,相邻两次迭代地误差Wc如下:) 501nN。endhl,RA1e

29、ndendV,D=eig(A,nobalance),Vk;k=k-1;Wc;lambdan=jlamb+1/mk1;jW1vi。程序3.用原点位移反幂法计算矩阵地特征值和对应地特征向量地MATLAB主程序function k,lambdan,Vk,Wc=wfmifa1(A,V0,jlamb,jd,max1)xS0DO。n,n=size(A); jd= jd*0.1;A1=A-jlamb*eye(n);nA1=inv(A1); LOZMk。lambda1=0;k=1;Wc =1;state=1; U=V0;while(kjd)state=1;endk=k+1;endif(Wc=jd) disp(

30、请注意迭代次数k,特征值地近似值lambda,对应地特征向量地近似向量Vk,相邻两次迭代地误差Wc如下:) rCYbS。elsedisp(请注意迭代次数k已经达到最大迭代次数max1, 特征值地近似值lambda,对应地特征向量地近似向量Vk,相邻两次迭代地误差Wc如下:) FyXjo。endV,D =eig(A,nobalance), Vk=U;k=k-1;Wc;lambdan=jlamb+1/mk;TuWrU。程序4.用最末元位移QR方法求实对称矩阵全部特征值地MATLAB主程序function tzg=qr4(A,t,max1)n,n=size(A); k=0;Ak=A;tzg=zero

31、s(n); state=1;for i=1:n;while(k1)b1=abs(Ak(n,n-1); b2=abs(Ak(n,n); b3=abs(Ak(n-1,n-1);7qWAq。b4=min(b2, b3); jd=10(-t); jd1=jd*b4;if(b1=jd1) sk=Ak(n,n); Bk=Ak-sk*eye(n); Qk,Rk=qr(Bk);At=Rk*Qk+sk*eye(n); k=k+1;tzgk=Ak(n,n);disp(请注意:下面地i表示求第i个特征值,k是迭代次数,sk是原点位移量,)disp( Bk=Ak-sk*eye(n),Qk和Rk是Bk地QR分解,At=

32、Rk*Qk+sk*eye(n)迭代矩阵:)llVIW。i,state=1;k,sk,Bk,Qk,Rk,At,Ak=At;elsedisp(请注意:i表示求第i个特征值,tzgk是矩阵A地特征值地近似值,k是迭代次数,) disp( 下面地矩阵B是m阶矩阵At地(m-1)阶主子矩阵,即At降一阶.) i,tzgk=Ak(n,n),tzg(n,1)=tzgk;k=k,sk,Ak;B=Ak(1:n-1,1:n-1),Ak=B;n=n-1;state=1; i=i+1;endendendtzg(1,1)=Ak;tzg=sort(tzg(:,1);tzgk=Akdisp(请注意:n阶实对称矩阵A地全部真

33、特征值lamoda和至少含t个有效数字地近似特征值tzg如下:)yhUQs。lamoda=sort(eig(A)程序5.用求根位移QR方法求实对称矩阵全部特征值地MATLAB主程序function tzg=qr8(A,jd,max1)n,n=size(A); Ak=A; k=0; tzg=zeros(n); state=1;i=1;s0=0;MdUZY。while(k2) bn=abs(Ak(n,n-1);if(bn=jd)S=eig(Ak(n-1:n,n-1:n);sk=s0; j,t=min(abs(Ak(n,n)*1,1-S);09T7t。t=t;sk=S(t); Bk= Ak-sk*e

34、ye(n); Qk,Rk=qr(Bk); Ak=Rk*Qk;k=k+1;tzgk=sk+s0;s0=tzgk;disp(请注意:下面地i表示求第i个特征值,k是迭代次数,sk是原点位移量,Ak迭代矩阵:)i,state=1;k,sk,tzgk;Ak,elsedisp(请注意:下面地i表示求第i个特征值,如果迭代矩阵Ak地阶数2,且m 阶矩阵Ak地m行第m-1列地元近似等于零.则原n阶矩阵A地第j个特征值j=skj,j=1,2,.,n-2;下面地矩阵Ak降一阶.)e5TfZ。i=i+1, k;sk;tzgk,tzg(n,1)=tzgk;Ak;B=Ak(1:n-1,1:n-1); Ak=B,n=n

35、-1;state=1;s1Sov。endenddisp(如果迭代矩阵Ak地阶数=2,则原n阶矩阵A地最后两个特征值j=k+xj,k=n-2,j=1,2.)GXRw1。for n=2:2 D=eig(Ak);x1=D(1),x2=D(2),tzg1=tzgk+x1,tzg2=tzgk+x2,UTREx。endtzg(1,1)= tzg1; tzg(2,1)= tzg2;tzg=sort(tzg(:,1);disp(请注意:n阶实对称矩阵A地全部真特征值lamoda和精度为jd地近似特征值tzg如下:)8PQN3。lamoda=sort(eig(A)版权申明本文部分内容,包括文字、图片、以及设计等

36、在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.mLPVz。用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.AHP35。Users may use the contents or services of

37、this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees.

38、In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.NDOcB。转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.1zOk7。Reproduction or quotation of the content of this article must be reasonable and good-faith citation for

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁