大学物理习题册答案(共18页).doc

上传人:飞****2 文档编号:14946076 上传时间:2022-05-09 格式:DOC 页数:18 大小:1.92MB
返回 下载 相关 举报
大学物理习题册答案(共18页).doc_第1页
第1页 / 共18页
大学物理习题册答案(共18页).doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《大学物理习题册答案(共18页).doc》由会员分享,可在线阅读,更多相关《大学物理习题册答案(共18页).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上练习 十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1 容器中储有一定量的处于平衡状态的理想气体,温度为T,分子质量为m,则分子速度在x方向的分量平均值为 (根据理想气体分子模型和统计假设讨论) ( )(A); (B); (C); (D)。解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为 ( )(A

2、)pV/m; (B)pV/(kT); (C)pV/(RT); (D)pV/(mT)。解: (B)理想气体状态方程3根据气体动理论,单原子理想气体的温度正比于 ( )(A)气体的体积; (B)气体的压强;(C)气体分子的平均动量;(D)气体分子的平均平动动能。解: (D) (分子的质量为m)4有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 ( )(A)氧气的温度比氢气的高; (B)氢气的温度比氧气的高;(C)两种气体的温度相同; (D)两种气体的压强相同。解:(A) ,(分子的质量为m)5如果在一固定容器内,理想气体分子速率都提高为原来

3、的2倍,那么 ( )(A)温度和压强都升高为原来的2倍;(B)温度升高为原来的2倍,压强升高为原来的4倍;(C)温度升高为原来的4倍,压强升高为原来的2倍;(D)温度与压强都升高为原来的4倍。解:(D)根据公式,即可判断. (分子的质量为m)6一定量某理想气体按pV2恒量的规律膨胀,则膨胀后理想气体的温度 ( ) (A)将升高; (B)将降低; (C)不变; (D)升高还是降低,不能确定。解:(B) pV2恒量, pV/T恒量,两式相除得VT恒量二、填空题1质量为M,摩尔质量为Mmol,分子数密度为n的理想气体,处于平衡态时,状态方程为_,状态方程的另一形式为_,其中k称为_常数。解: ; ;

4、玻耳兹曼常数2两种不同种类的理想气体,其分子的平均平动动能相等,但分子数密度不同,则它们的温度 ,压强 。如果它们的温度、压强相同,但体积不同,则它们的分子数密度 ,单位体积的气体质量 ,单位体积的分子平动动能 。(填“相同”或“不同”)。解: 平均平动动能,相同,不同;相同,不同;相同. (分子的质量为m)3理想气体的微观模型:(1)_;(2)_;(3)_。简言之理想气体的微观模型就是_。解: (1)气体分子的大小与气体分子间的距离相比较,可以忽略不计.(2)气体分子的运动服从经典力学规律.在碰撞中,每个分子都可以看作完全弹性的小球.(3)除碰撞的瞬间外,分子间相互作用力可以忽略不计。简言之

5、:气体分子是自由地、无规则地运动着的弹性分子的集合。4氢分子的质量为3.310-24g,如果每秒有1023个氢分子沿着与容器器壁的法线成45角方向以105cm/s的速率撞击在2.0cm2面积上(碰撞是完全弹性的),则由这些氢气分子产生的压强为_。解: (分子的质量为m)5宏观量温度T与气体分子的平均平动动能的关系为=_,因此,气体的温度是_的量度。解:, 分子的平均平动动能(分子无规则热运动的程度)6*储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 0.7 K ,则容器作定向运动的速度v =_m/s,容器中气体

6、分子的平均动能增加了_J。解:分子的平均动能(平动动能+转动动能)增加三、计算题1有一水银气压计,当水银柱高度为0.76m时,管顶离水银柱液面为0.12m。管的截面积为2.010-4m2。当有少量氦气混入水银管内顶部,水银柱高度下降为0.60m。此时温度为27,试计算有多少质量氦气在管顶?(氦气的摩尔质量为0.004kg/mol,0.76m水银柱压强为1.013105Pa)解:设管顶部氦气压强为, 由理想气体状态方程可得, 2一瓶氢气和一瓶氧气温度相同。若氢气分子的平均平动动能为= 6.2110-21 J。求: (1) 氧气分子的平均平动动能和方均根速率; (2) 氧气的温度。(阿伏伽德罗常量

7、NA6.0221023 mol-1,玻尔兹曼常量k1.3810-23 JK-1) 解:(1) 温度相同,分子的平均平动动能相同 ,(分子的质量为m)(2) 氧气的温度 3(1)有一带有活塞的容器中盛有一定量的气体,如果压缩气体并对它加热,使它的温度从27升到177、体积减少一半,求气体压强变为原来的几倍?(2)这时气体分子的平均平动动能变为原来的几倍?分子的方均根速率变为原来的几倍?解:(1) 根据理想气体状态方程,由题意可知,(2) 根据分子平均平动动能公式可知 ,根据方均根速率公式 4 水蒸气分解为同温度T的氢气和氧气H2O H2O2时,1摩尔的水蒸气可分解成1摩尔氢气和摩尔氧气。当不计振

8、动自由度时,求此过程中内能的增量。解:水蒸汽的自由度, 氢气和氧气的自由度均为5, 内能的增量5有 210-3 m3刚性双原子分子理想气体,其内能为6.75102 J。(1) 试求气体的压强;(2) 设分子总数为 5.41022个,求分子的平均平动动能及气体的温度。解:(1)因为,内能。所以 (2)分子的平均平动动能,6一容器被中间的隔板分成相等的两半,一半装有氦气,温度为250K;另一半装有氧气,温度为310K,二者压强相等。求去掉隔板两种气体混合后的温度。解:设氦气、氧气的摩尔数分别为、,根据理想气体状态方程可知, 将系统进行的过程近似地看成绝热过程,又因系统对外不作功,内能守恒 ,练习

9、十四知识点:麦克斯韦速率分布律、三个统计速率、平均碰撞频率和平均自由程一、选择题1 在一定速率u附近麦克斯韦速率分布函数 f(u)的物理意义是:一定量的气体在给定温度下处于平衡态时的 ( )(A)速率为u的分子数;(B)分子数随速率u的变化;(C)速率为u的分子数占总分子数的百分比;(D)速率在u附近单位速率区间内的分子数占总分子数的百分比。解:(D) ,速率在附近单位速率区间内的分子数占总分子数的百分比2 如果氢气和氦气的温度相同,摩尔数也相同,则 ( )(A)这两种气体的平均动能相同; (B)这两种气体的平均平动动能相同;(C)这两种气体的内能相等; (D)这两种气体的势能相等。解:(B)

10、 平均动能=平均平动动能+转动动能,氦气为单原子分子,;氢气为双原子(刚性)分子, 3 在恒定不变的压强下,理想气体分子的平均碰撞次数与温度T的关系为 ( )(A)与T无关; (B)与成正比; (C)与成反比;(D)与T成正比; (E)与T成反比。解:(C)4 根据经典的能量按自由度均分原理,每个自由度的平均能量为 ( )(A)kT/4; (B)kT/3; (C)kT/2; (D)3kT/2; (E)kT。 解:(C)5 在20时,单原子理想气体的内能为 ( )(A)部分势能和部分动能; (B)全部势能; (C)全部转动动能;(D)全部平动动能; (E)全部振动动能。解:(D)单原子分子的平动

11、自由度为3,转动自由度0, 振动自由度为06 1mol双原子刚性分子理想气体,在1atm下从0上升到100时,内能的增量为 ( )(A)23J; (B)46J; (C)2077.5J; (D)1246.5J; (E)12500J。解:(C)二、填空题1为麦克斯韦速率分布函数,的物理意义是_,的物理意义是_,速率分布函数归一化条件的数学表达式为_,其物理意义是_。解:,速率区间内分子数占总分子数的百分率; ,速率区间内分子的平均平动动能; ;速率在内的分子数占总分子数的比率为1。2 同一温度下的氢气和氧气的速率分布曲线如右图所示,其中曲线1为_的速率分布曲线,_的最概然速率较大(填“氢气”或“氧

12、气”)。若图中曲线表示同一种气体不同温度时的速率分布曲线,温度分别为T1和T2且T1TB;(C)TAS2; (B)S1、或=)。解:.由功的大小与图上曲线下的面积关系讨论,3*使4mol的理想气体,在T=400K的等温状态下,准静态地从体积V膨胀到2V,则此过程中,气体的熵增加是_,若此气体膨胀是绝热状态下进行的,则气体的熵增加是_。解:23J/K,04*从统计意义来解释:不可逆过程实质是一个_的转变过程。一切实际过程都向着_的方向进行。解:概率,概率大的状态5热力学第二定律的两种表述:开尔文表述: 。克劳修斯表述: 。解:开尔文表述:不可能制成一种循环动作的热机,只从一个热源吸取热量,使之完

13、全变为有用的功,而其他物体不发生任何变化克劳修斯叙述:热量不可能自动从低温物体传向高温物体.6*熵是 的量度。解:熵是分子无序性或混乱性的量度.三、计算题1一卡诺循环热机,高温热源温度是 400 K每一循环从此热源吸进 100 J热量并向一低温热源放出80 J热量。求:(1) 低温热源温度;(2) 这循环的热机效率。解:(1) , (2) 2 如图所示,有一定量的理想气体,从初状态a(p1,V1)开始,经过一个等体过程达到压强为p1/4的b态,再经过一个等压过程达到状态c,最后经等温过程而完成一个循环。求该循环过程中系统对外作的功A和所吸的热量Q。解:对等温过程有 ,, , 3一定量的理想气体

14、经历如图所示的循环过程,AB和CD是等压过程,BC和DA是绝热过程。已知:TC 300 K,TB 400 K。试求:此循环的效率。解:由绝热方程得:,又 , 或 AB过程吸热 CD过程放热 循环效率为 4两台卡诺热机联合运行,即以第一台卡诺热机的低温热源作为第二台卡诺热机的高温热源。试证明它们各自的效率及和该联合机的总效率有如下的关系:+(1-)解:循环为卡诺循环,5*1kg0的冰,在0时完全熔化成水。已知冰在0时的熔化热J/g。求冰经过熔化过程的熵变,并计算从冰到水微观状态数增大到几倍。解:冰在时等温熔化,可以设想它和一个的恒温热源接触而进行可逆的吸热过程,因而,又。所以6*1mol的理想气

15、体由初态经某一过程到达末态,求熵变。设气体的为常量。解:练习 十七(简谐振动、旋转矢量、简谐振动的合成)一、选择题1 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C)(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;(C)两种情况都作简谐振动;(D)两种情况都不作简谐振动。解:(C) 竖直弹簧振子:(),弹簧置于光滑斜面上: (),2 两个简谐振动的振动曲线如图所示,则有 (A)(A)超前; (B)落后;(C)超前; (D)落后。解:(A),3 一个质点作简谐振动,周期为,当质点由平衡位置

16、向轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B)(A); (B); (C); (D)。解:(B)振幅矢量转过的角度,所需时间,4 分振动表式分别为和(SI制)则它们的合振动表达式为: (C)(A); (B);(C); (D)。解:(C)作旋转矢量图或根据下面公式计算;5 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为和,且,则两弹簧振子的周期之比为 (B)(A); (B); (C); (D)。解:(B) 弹簧振子的周期, ,6. 一轻弹簧,上端固定,下端挂有质量为m的重物,其自由振动的周期为T今已知振子离开平衡位置为x时,其振动速度为v,加速度

17、为a则下列计算该振子劲度系数的公式中,错误的是: (B) (A) ; (B) ;(C) ; (D) 。 解:7. 两个质点各自作简谐振动,它们的振幅相同、周期相同第一个质点的振动表式为x1 = Acos(wt + a)当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处则第二个质点的振动表式为 (B)(A) ; (B) ;(C) ; (D) 。解:(B)作旋转矢量图8. 一质点沿x轴作简谐振动,振动表式为 (SI制)。从t = 0时刻起,到质点位置在x = -2cm处,且向x轴正方向运动的最短时间间隔为 (C)(A); (B); (C); (D)。解:(C)作旋转

18、矢量图二、填空题1. 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_;w =_;f 0=_。解:由图可知,作旋转矢量得2单摆悬线长,在悬点的铅直下方处有一小钉,如图所示。则单摆的左右两方振动周期之比为 。解:单摆周期,3一质点沿x轴作简谐振动,振动范围的中心点为x轴的原点。已知周期为T,振幅为A。(1)若t = 0时质点过x = 0处且朝x轴正方向运动,则振动方程为 x =。(2)若t = 0时质点处于处且向x轴负方向运动,则振动方程为x =。解:作旋转矢量图,由图可知(1);(2)4有两个相同的弹簧,其劲度系数均为,(1)把它们串联起来,下面挂一个质量为的重

19、物,此系统作简谐振动的周期为 ;(2)把它们并联起来,下面挂一质量为的重物,此系统作简谐振动的周期为 。解:两个相同弹簧串联, 劲度系数为,;两个相同弹簧并联,劲度系数为,.5质量为的物体和一轻质弹簧组成弹簧振子,其固有振动周期为,当它作振幅为的自由简谐振动时,其振动能量= 。解:弹簧振子振动周期,振动能量6若两个同方向、不同频率的谐振动的表达式分别为和,则它们的合振动频率为 ,拍频为 。xt Ox1(t)x2(t)A1 A2 T-A2 -A1 解:, ,合振动频率,拍频7两个同方向的简谐振动曲线如图所示。合振动的振幅为_,合振动的振动方程为_。解:作旋转矢量图; 三、计算题1质量m = 10

20、 g的小球按如下规律沿x轴作简谐振动:(SI)求此振动的周期、振幅、初相、速度最大值和加速度最大值以及振动的能量。解:圆频率,周期,振幅,初相 振动速度最大值,加速度最大值 振动的能量2*. 边长为的一立方体木块浮于静水中,其浸入水中部分的深度为,今用手指沿竖直方向将其慢慢压下,使其浸入水中部分的深度为,然后放手任其运动。若不计水对木块的粘滞阻力,试证明木块作简谐运动,并求振动的周期和振幅。(水和木块的密度分别为)解:木块平衡时:,取液面为坐标原点,向下为轴正向,当木块浸入水中深度增加时, 3.一水平放置的弹簧振子,振动物体质量为0.25kg,弹簧的劲度系数。 (1) 求振动的周期T和角频率w

21、; (2) 以平衡位置为坐标原点。如果振幅A =15 cm,t = 0时物体位于x = 7.5 cm处,且物体沿x轴反向运动,求振动的表达式; (3) 求振动速度的表达式。解:(1) 角频率, (2) 作旋转矢量图,由图可知 (SI制), (3) (SI制)4 一个弹簧振子作简谐振动,振幅,如弹簧的劲度系数,所系物体的质量,试求:(1)当系统动能是势能的三倍时,物体的位移是多少?(2)物体从正的最大位移处运动到动能等于势能的三倍处所需的最短时间是多少?解(1)由题意,,得 , (2) 由题意知 ,作旋转矢量图知:,最短时间为 5有两个同方向、同频率的简谐振动,它们的振动表达式为:,(SI制)(

22、1)求它们合成振动的振幅和初相。(2)另有一个振动,问为何值时,的振幅最大;为何值时,的振幅最小。解:(1)由图可知,(2) 的振幅最大时; 的振幅最小时 ,练习 十八平面简谐波、波的能量一、选择题1一个平面简谐波沿轴负方向传播,波速。处,质点振动曲线如图所示,则该波的表达式(SI制)为 (B )x=0处质点在t=0时振幅矢量.(A);(B);(C);(D)。解:(B)由图可知,处质点振动方程波的表达式2一个平面简谐波沿轴正方向传播,波速为,时刻的波形图如图所示,则该波的表达式(SI制)为 ( C )(A);(B);(C);(D)。x=0处质点在t=0时振幅矢量.解:(C)由图可知,设处质点振

23、动方程为,时处质点位移为零且向轴正向运动, 作旋转矢量图知,波的表达式3*. 一平面简谐波以速度u沿x轴正方向传播,在t = t时波形曲线如图所示则坐标原点O的振动方程为 ( D )(A) ;(B) ;(C) ;(D) 。解:(D) 由图可知,时处质点位移为零且向轴正向运动, 4. 一个平面简谐波在弹性媒质中传播,媒质质元从最大位移处回到平衡位置的过程中 ( C )(A)它的势能转化成动能; (B)它的动能转化成势能;(C)它从相邻的媒质质元获得能量,其能量逐渐增加;(D)把自己的能量传给相邻的媒质质元,其能量逐渐减小。解:(C)质元的动能,势能,质元由最大位移处回到平衡位置过程中,和由到最大值.5一平面简谐波在弹性媒质中传播时,在传播方向上某质元在某一时刻处于最大位移处,则它的 ( B )(A)动能为零,势能最大; (B)动能为零,势能也为零;(C)动能最大,势能也最大;(D)动能最大,势能为零。解:(B)质元的动能,势能,质元在最大位移处,和均为.6频率为 100 Hz,传播速度为300 m/s的平面简谐波,波线上距离小于波长的两点振动的相位差为,则此两点相距 ( C )

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁