2022年示范教案6.pdf

上传人:H****o 文档编号:14825561 上传时间:2022-05-08 格式:PDF 页数:7 大小:175KB
返回 下载 相关 举报
2022年示范教案6.pdf_第1页
第1页 / 共7页
2022年示范教案6.pdf_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2022年示范教案6.pdf》由会员分享,可在线阅读,更多相关《2022年示范教案6.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、4.3 空间直角坐标系4.3.1 空间直角坐标系整体设计教学分析学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习空间直角坐标系有了一定的基础.这对于本节内容的学习是很有帮助的.但部分同学仍然会在空间思维与数形结合方面存在困惑. 本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础.通过激发学生学习的求知欲望 ,使学生主动参与教学实践活动.创设学习情境,营造氛围 ,精心设计问题,让学生在整个学习过程中经常有

2、自我展示的机会,并有经常性的成功体验,增强学生的学习信心,从学生已有的知识和生活经验出发,让学生经历知识的形成过程.通过阅读教材,并结合空间坐标系模型,模仿例题 ,解决实际问题. 三维目标1.掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比 ,迁移 ,化归的能力 . 2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探

3、索的精神. 重点难点教学重点:在空间直角坐标系中确定点的坐标. 教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用 . 课时安排1 课时教学过程导入新课思路 1.大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km 以上 ,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快 ,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车 ,汽车要低得多 ,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度 ,还要指出航线距离地面的高度.为此我们学习空间直角坐标系,教师板

4、书课题:空间直角坐标系. 思路 2.我们知道数轴上的任意一点M 都可用对应一个实数x 表示 ,建立了平面直角坐标系后,平面上任意一点M 都可用对应一对有序实数(x,y)表示 .那么假设我们建立一个空间直角坐标系时 ,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?为此我们学习空间直角坐标系 ,教师板书课题:空间直角坐标系. 推进新课新知探究提出问题在初中 ,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示? 在初中 ,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些 ?平面直角坐标系上的点怎样表示? 精品资料 - - -

5、 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 7 页 - - - - - - - - - - 在空间 ,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?观察图 1,体会空间直角坐标系该如何建立. 观察图 2,建立了空间直角坐标系以后,空间中任意一点M 如何用坐标表示呢?讨论结果: 在初中 ,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x 来表示 . 在初中 ,我们学过平面直角坐标系,平

6、面直角坐标系是以一点为原点O,过原点O 分别作两条互相垂直的数轴Ox 和 Oy,xOy 称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:互相垂直;原点重合 ;通常取向右、向上为正方向;单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数 (x,y). 在空间 ,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来. 观察图2,OABC DABC是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以 O 为原点 ,分别以射线OA,OC,OD 的方

7、向为正方向,以线段OA,OC,OD 的长为单位长度,建立三条数轴Ox,Oy,Oz 称为 x 轴、y 轴和 z 轴,这时我们说建立了一个空间直角坐标系Oxyz,其中 O 叫坐标原点 ,x 轴、y 轴和 z 轴叫坐标轴 .如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy 平面 ,yOz 平面 ,zOx 平面. 由此我们知道 ,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长. 图 1 图 1 表示的空间直角坐标系也可以用右手来确定.用右手握住z 轴,当右手的四个手指从x 轴正向以 90 的角度转向y 轴的正向时 ,大拇指的指向就是z 轴的正向 .我们称这种坐标

8、系为右手直角坐标系 .如无特别说明 ,我们课本上建立的坐标系都是右手直角坐标系. 注意 :在平面上画空间直角坐标系Oxyz 时,一般使 xOy=135 ,xOy=90 .即用斜二测画法画立体图 ,这里显然要注意在y 轴和 z 轴上的都取原来的长度,而在 x 轴上的长度取原来长度的一半 .同学们往往把在x 轴上的长度取原来的长度,这就不符和斜二测画法的约定,直观性差. 观察图 2,建立了空间直角坐标系以后,空间中任意一点M 就可以用坐标来表示了. 已知 M 为空间一点 .过点 M 作三个平面分别垂直于x 轴、 y 轴和 z 轴,它们与 x 轴、 y 轴和 z轴的交点分别为P、Q、R,这三点在x

9、轴、y 轴和 z 轴上的坐标分别为x,y,z.于是空间的一点M 就唯一确定了一个有序数组x,y,z.这组数 x,y,z 就叫做点M 的坐标 ,并依次称x,y,z 为点 M的横坐标 .纵坐标和竖坐标.坐标为 x,y,z 的点 M 通常记为 M(x,y,z). 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 7 页 - - - - - - - - - - 图 2 反过来 ,一个有序数组x,y,z,我们在 x 轴上取坐标为x 的点 P,在 y 轴上取坐标为y 的点 Q,在 z轴上取坐标为z 的点 R

10、,然后通过P、Q 与 R 分别作 x 轴、y 轴和 z 轴的垂直平面.这三个垂直平面的交点M 即为以有序数组x,y,z 为坐标的点 .数 x,y,z 就叫做点 M 的坐标 ,并依次称x,y 和z 为点 M 的横坐标、纵坐标和竖坐标.(如图 2 所示) 坐标为 x,y,z 的点 M 通常记为 M(x,y,z). 我们通过这样的方法在空间直角坐标系内建立了空间的点 M 和有序数组x,y,z 之间的一一对应关系. 注意: 坐标面上和坐标轴上的点,其坐标各有一定的特征. 如果点 M 在 yOz 平面上 ,则 x=0;同样 ,zOx 面上的点 ,y=0;xOy 面上的点 ,z=0;如果点 M 在x 轴上

11、 ,则 y=z=0;如果点 M 在 y 轴上 ,则 x=z=0;如果点M 在 z 轴上 ,则 x=y=0 ;如果 M 是原点 ,则 x=y=z=0. 空间点的位置可以由空间直角坐标系中的三个坐标唯一确定,因此 ,常称我们生活的空间为“ 三度空间或三维空间”.事实上 ,我们的生活空间应该是四度空间,应加上时间变量t.即(x,y,z,t),它表示在时刻t 所处的空间位置是(x,y,z). 应用示例思路 1例 1 如图 3,长方体 OABC DABC中,|OA|=3,|OC|=4,|OD |=2,写出 D,C,A,B四点的坐标 .图 3 活动: 学生阅读题目 ,对照刚学的知识,先思考 ,再讨论交流

12、,教师适时指导,要写出点的坐标,首先要确定点的位置,再根据各自坐标的含义和特点写出.D 在 z 轴上 ,因此它的横纵坐标都为0,C 在 y 轴上 ,因此它的横竖坐标都为0,A 为在 zOx 面上的点 ,y=0; B 不在坐标面上,三个坐标都要求 . 解:D 在 z 轴上 ,而|OD|=2,因此它的竖坐标为2,横纵坐标都为0,因此 D 的坐标是 (0,0,2).同理 C的坐标为 (0,4,0).A在 xOz 平面上 ,纵坐标为 0,A 的横坐标就是|OA|=3,A 的竖坐标就是|OD|=2,所以 A 的坐标就是 (3,0,2).点 B 在 xOy 平面上的射影是点B,因此它的横坐标x 与纵坐标y

13、 同点 B 的横坐标x 与纵坐标 y 相同 ,在 xOy 平面上 ,点 B 的横坐标x=3,纵坐标 y=4;点 B 在 z 轴上的射影是点D, 它的竖坐标与D 的竖坐标相同 ,点 D 的竖坐标 z=2,所以点 B 的坐标是 (3,4,2). 点评 :能准确地确定空间任意一点的直角坐标是利用空间直角坐标系的基础,一定掌握如下方法 ,过点 M 作三个平面分别垂直于x 轴、 y 轴和 z 轴,确定 x,y 和 z,同时掌握一些特殊点的坐标的表示特征. 例 2 讲解课本例2.活动:学生阅读 ,思考与例 1 的不同 ,教师引导学生考虑解题的方法,图中没有坐标系,这就给我们解题带来了难度,同时也给我们的思

14、维提供了空间,如何建立空间直角坐标系才能使问题变得更简单 ?一般来说 ,以特殊点为原点,我们所求的点在坐标轴上或在坐标平面上的多为基本精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 7 页 - - - - - - - - - - 原则建立空间直角坐标系,这里我们以上底面为xOy 平面 ,其他不变 ,来看这 15 个点的坐标 . 解:把图中的钠原子分成上、中、下三层,下层的钠原子全部在xOy 平面上 ,因此其竖坐标全部是 0,所以这五个钠原子所在位置的坐标分别为(0,0,0)、(1,0,0)、(

15、1,1,0)、(0,1,0)、(21,21,0);中层的钠原子全部在与xOy 平行的平面上 ,与 z轴交点的竖坐标是21,所以这四个钠原子所在位置的坐标分别为(21,0,21)、(1,21,21)、(21,1,21)、(0,21,21);上层的钠原子全部在与xOy平行的平面上 ,与 z 轴交点的竖坐标是1,所以这五个钠原子所在位置的坐标分别为(0,0,1)、(1,0,1)、(1,1,1)、(0,1,1)、(21,21,1). 思考: 如果把原点取在中间的点(上述两点的中点氯原子)上,以中层面作为xOy 平面 ,结果会怎样呢?解:把图中的钠原子分成上、中、下三层,中层的钠原子全部在xOy 平面上

16、 ,因此其竖坐标全部是 0,所以这四个钠原子所在位置的坐标分别为(21,0,0)、(1,21,0)、(21,1,0)、(0,21,0);上层的钠原子全部在与xOy 平行的平面上 ,与轴交点的竖坐标是21,所以这五个钠原子所在位置的坐标分别为 (0,0,21)、(0,1,21)、(1,0,21)、(1,1,21)、(21,21,21);下层的钠原子全部在与xOy平行的平面上 ,与轴交点的竖坐标是-21,所以这五个钠原子所在位置的坐标分别为(0,0,-21)、(1,0,-21)、 (1,1,-21)、(0,1,-21)、(21,21,-21). 点评 :建立坐标系是解题的关键,坐标系建立的不同,点

17、的坐标也不同,但点的相对位置是不变的,坐标系的不同也会引起解题过程的难易程度不同.因此解题时要慎重建立空间直角坐标系. 思路 2例 1 如图 4,已知点 P 在 x轴正半轴上 ,|OP|=2,PP在 xOz 平面上 ,且垂直于 x 轴,|PP |=1,求点 P和 P 的坐标 . 图 4 解:显然 ,P在 x 轴上,它的坐标为 (2,0,0). 若点 P 在 xOy 平面上方 ,则点 P 的坐标为 (2,0,1). 若点 P 在 xOy 平面下方 ,则点 P 的坐标为 (2,0,-1). 点评 :注意点 P有两种可能的位置情况,不要漏解 . 例 2 如图 5,在正方体ABCD A1B1C1D1中

18、,E,F 分别是 BB1和 D1B1的中点 ,棱长为 1,求 E,F点的坐标 . 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 7 页 - - - - - - - - - - 图 5 解:方法一 :从图中可以看出E 点在 xOy 平面上的射影为B,而 B 点的坐标为 (1,1,0),E 点的竖坐标为21,所以E 点的坐标为 (1,1,21);F 点在xOy 平面上的射影为G,而 G 点的坐标为(21,21,0),F 点的竖坐标为1,所以 F 点的坐标为 (21,21,1). 方法二 :从图中

19、条件可以得到B1(1,1,1),D1(0,0,1),B(1,1,0).E 为 BB1的中点 ,F 为 D1B1的中点 ,由 中 点 坐 标 公 式 得E点 的 坐 标 为 (201,211,211)=(1,1,21),F点 的 坐 标 为(211,201,201)=(21,21,1). 点评 :(1)平面上的中点坐标公式可以推广到空间,即设A(x1,y1,z1),B(x2,y2,z2),则 AB的中点P(221xx,221yy,221zz); (2)熟记坐标轴上的点的坐标和坐标平面上的点的坐标表示的特征. 变式训练1.在上题中求B1(1,1,1)点关于平面xoy 对称的点的坐标. 解:设所求的

20、点为B0(x0,y0,z0),由于 B 为 B0B1的中点 ,所以210,211,211000zyx解之 ,得1, 1, 1000zyx.所以B0(1,1,-1). 2.在上题中求B1(1,1,1)点关于 z 轴对称的点的坐标. 解:设所求的点为P(x0,y0,z0),由于 D1为 PB1的中点 ,因为 D1(0,0,1),所以.211,210,210000zyx解之 ,得. 1, 1, 1000zyx所以 P(-1,-1,1). 3.在上题中求B1(1,1,1)点关于原点D 对称的点的坐标. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 -

21、- - - - - - - - -第 5 页,共 7 页 - - - - - - - - - - 解:设所求的点为M(x0,y0,z0),由于 D 为 MB1的中点 ,因为 D(0,0,0), 所以210,210,210000zyx.解之 ,得.1, 1, 1000zyx所以 M(-1,-1,-1). 知能训练课本本节练习1、2、3. 拓展提升1.在空间直角坐标系中的点P(x,y,z)关于坐标原点;横轴 (x 轴);纵轴 (y 轴 );竖轴 (z轴);xOy 坐标平面 ;yOz 坐标平面 ;zOx 坐标平面的对称点的坐标是什么? 解:根据平面直角坐标系的点的对称方法结合中点坐标公式可知: 点

22、P(x,y,z)关于坐标原点的对称点为P1(-x,-y,-z); 点 P(x,y,z)关于横轴 (x 轴)的对称点为P2(x,-y,-z); 点 P(x,y,z)关于纵轴 (y 轴)的对称点为P3(-x,y,-z); 点 P(x,y,z)关于竖轴 (z 轴)的对称点为P4(-x,-y,z); 点 P(x,y,z)关于 xOy 坐标平面的对称点为P5(x,y,-z); 点 P(x,y,z)关于 yOz 坐标平面的对称点为P6(-x,y,z); 点 P(x,y,z)关于 zOx 坐标平面的对称点为P7(x,-y,z). 点评 :其中记忆的方法为:关于谁谁不变 ,其余的相反 .如关于横轴 (x 轴)

23、的对称点 ,横坐标不变 ,纵坐标、 竖坐标变为原来的相反数;关于 xOy 坐标平面的对称点,横坐标、 纵坐标不变 ,竖坐标相反 . 变式训练在空间直角坐标系中的点P(a,b,c),有下列叙述 : 点 P(a,b,c)关于横轴 (x 轴)的对称点是P1(a,-b,c);点 P(a,b,c)关于 yOz 坐标平面的对称点为P2(a,-b,-c);点 P(a,b,c)关于纵轴 (y 轴)的对称点是P3(a,-b,c);点 P(a,b,c)关于坐标原点的对称点为 P4(-a,-b,-c). 其中正确叙述的个数为( ) A.3 B.2 C.1 D.0 分析: 错 ,对 . 答案: C 课堂小结1.空间直

24、角坐标系的建立. 2.空间直角坐标系中点的坐标的确定. 3.空间直角坐标系中点的位置的确定. 4.中点公式:P1(x1,y1,z1),P2(x2,y2,z2),则 P1P2中点 M 的坐标为 (221xx,221yy,221zz). 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 7 页 - - - - - - - - - - 5.空间直角坐标系中点的对称点的坐标. 作业习题 4.3 A 组 1、2. 设计感想通过复习相关内容,为新课的引入和讲解做好铺垫.设置问题 ,创设情境 ,引导学生用类比

25、的方法探索新知 .由于学生的空间观念还比较薄弱,教学中宜多采用教具演示,尽量使学生能够形象直观地掌握知识内容.本课时可自制空间直角坐标系模型演示,帮助学生理解空间直角坐标系的概念 .如果学生先前的学习不是主动的、不是入脑的 ,那么老师的血汗与成绩就不成比例,更谈不上学生的创新意识.鉴于此 ,在教学中积极挖掘教学资源,努力创设出一定的教学情景,设计例题思路,与高考联系 ,吸引学生 ,引起学生学习的意向,即激发学生的学习动机,达到学生“ 想学 ” 的目的 .为能增强学生学习的目的性,在教学中指明学生所要达到的目标和所学的内容,即让学生知道学到什么程度以及学什么.同时调整教学语言,使之简明、清楚、易听明白,注重一些技巧 ,如重复、深入浅出、抑扬顿挫等. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 7 页 - - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁