《2022年对数概念及其运算复习过程.pdf》由会员分享,可在线阅读,更多相关《2022年对数概念及其运算复习过程.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流对数概念及其运算知识点 1 对数1.对数的定义如果1,0 aaa的b次幂等于N, 那么数b叫做以a为底N的对数,记作,logbNa其中a叫 做 对 数 的 底 数 ,N叫 做 真 数 。 在 对 数 函 数bNalog中 ,a的 取 值 范 围 是1, 0aa且,N的取值范围是0N,b的取值范围是Rb。【注意】根据对数的定义可知(1)零和负数没有对数,真数为正数,即0N(2)在对数中必须强调底数0a且1a2.常用对数(1)定义:以10 为底的对数叫做常用对数,N10log记做Nlg。(2)常用对数的性质10 的整数指数幂的对数就是幂的指
2、数,即是整数nnn10lg3.自然对数(1)定义:以71828.2e为底的对数叫做自然对数,Nelog通常记为InN。(2)自然对数与常用对数之间的关系:依据对数换底公式,可以得到自然对数与常用对数之间的关系:4343.0lglglgNeNInN,即NInNlg303.2。4.指数式与对数式的互化(1)符号Nalog既是一个数值,也是一个算式, 即已知底数和在某一个指数下的幂,求其指数的算式。对数式bNalog的a、N、b在指数式Nab中分别是底数、指数和幂。(2)充分利用指数式和对数式的互换,讲述四条规则:在bNalog中,必须0N,这是由于在实数范围内,正数任何次幂都是正数,因而Nab中的
3、N总是正数,须强调零和负数没有对数。因为10a,所以01loga。因为,1aa所以1log aa。因为Nab,所以bNalog,所以NaNgla0。【例 1】下列说法错误的是()(A) 负数和零没有对数(B)任何一个指数式都可以化为对数式(C)以 10 为底的对数叫做常用对数(D)以e为底的对数叫做自然对数精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 6 页 - - - - - - - - - - 此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流【例 2】 (1)把下列指数式写成对
4、数式;2713x;6441x;16121x51521(2)把下列对数式写成指数式:;29log3; 3001.0lg5321log2。知识点 2 对数的运算对数的运算性质如果0a且1a,0M,0N,那么,;logloglog)1(NMMNaaa(2);logloglogNMNMbaa(3)RnMnMnnaloglog;(4)0,loglogmRnmMmnMana。用语言文字叙述对数运算法则为两个正数的积的对数等于这两个对数的和;两个正数的商的对数等于这两个正数的对数的差;一个正数的n次方的对数,等于这个正数的对数的n倍。【例 3】下列各式与cablg相等的是()cabAlglg)(cbaBlg
5、lglgcbaClglglgcabDlglg【例 4】计算:;01.0lg12;44log2324; 5log3log3222log45log23log4555. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 6 页 - - - - - - - - - - 此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流知识点 3 换底公式1.换底公式0, 1,0, 1,0logloglogNbbaabNNaab2.换底公式的推论1,0, 1,0log1log1bbaaabba0, 1, 0log
6、log2baabbmaam0,0, 1,0loglog3mbaabmnbanam【例 5】计算:;32log18;5log4log28252log2log3log3log39384; 91log81log251log4532; 375754log31log9log2log5【例 6】 (1)已知,3lg,2lgba用ba,表示45lg的值;(2)已知,518,9log18ba用ba,表示45log36的值。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 6 页 - - - - - - - -
7、- - 此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流反函数的概念知识点反函数1.定义对函数Dxxfy,设它的值域为A,如果对A中任意一个值y,在D 中总有唯一确定的x值与它对应,且满足xfy,这样得到的x关于y的函数叫做xfy的反函数,记作yfx1,习惯上,自变量常用x来表示,而函数用y表示,所以把它改写为: Axxfy1. 2.反函数存在的条件函数xfy存在反函数的充要条件是函数xfy是定义域到值域上的一一映射所确定的函数。注意:单调函数必有反函数。3.反函数与原函数的关系(1)反函数和原函数互为反函数:如果函数xfy有反函数xfy1,那么函数xfy1的反函数是xfy,则xfy
8、与xfy1互为反函数;(2)反函数和原函数的定义域与值域互换函数xfy反函数xfy1定义域A C 值域C A (3)互为反函数的函数的图像间的关系函数xfy的图像和它的反函数xfy1的图像关于直线xy对称。函数xfy的图像与yfx1的图像是同一个函数图像。4.求反函数的步骤(1)求函数xfy的值域(若值域显然,解题时常略去不写)。(2)反解:由xfy写出x关于y的关系式;(3)改写:在yfx1中,将x,y互换得到xfy1;(4)标明反函数的定义域,即(1)中求出的值域。【例 1】下列函数没有反函数的是:;532xy112xy;精品资料 - - - 欢迎下载 - - - - - - - - -
9、- - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 6 页 - - - - - - - - - - 此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流;2123xy03)0(32xxxxy(A)(B)(C)(D)【例 2】求下列函数的反函数:(1))2(212xxxy;(2)25142xxxy;(3);12xxxy(4)0110122xxxxy【例 3】求函数112xxy的反函数 . 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 6 页 - - - -
10、- - - - - - 此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流对数概念及运算与反函数总结1、对数的运算法则(将高一级运算向低级运算转化)(1)NMMNaaalogloglog(2)NMNMaaalogloglog(3)MnManaloglog(4)MnManalog1log2、一个正数的对数是由首数加尾数组成的3、几个常用的对数结论01loga1log aananalogbabalogmnanamlogbmnbanamloglog1loglogabba4、换底公式:ababbccalglglogloglog5、常用对数与自然对数6、对数的运算:以同底为基本要求,注意质因数分解,未知数在指数位置即为求对数7、研究反函数是否存在:从函数的单调性出发8、反函数的定义域:与原函数的值域相同,必须研究原函数值域求得9、求反函数的基本步骤,分段函数的反函数分段求得10、原函数与反函数的图像关于xy对称11、xxff1fRxxxff1Dx12、反函数具有保奇性,并且保持单调性不变13、函数axfy与axfy1不是互为反函数关系14、互为反函数的公共点不一定在xy上精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 6 页 - - - - - - - - - -