因数与倍数知识点归纳及考点应用(共7页).doc

上传人:飞****2 文档编号:14698057 上传时间:2022-05-05 格式:DOC 页数:7 大小:55KB
返回 下载 相关 举报
因数与倍数知识点归纳及考点应用(共7页).doc_第1页
第1页 / 共7页
因数与倍数知识点归纳及考点应用(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《因数与倍数知识点归纳及考点应用(共7页).doc》由会员分享,可在线阅读,更多相关《因数与倍数知识点归纳及考点应用(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上因数与倍数知识点归纳及考点应用一、 倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。例如:6是倍数、3和2是因数。()改正:6是3和2的倍数,3和2是6的因数。练习:(1)85=40,( )和( )是( )的因数,( )是( )和( )的倍数。(2)因为369=4,所以( )是( )和( )的倍数,( )和( )是( )的因数。(3)在186=3中,18是6的( ),3和6是( )的( )。(4)在147=2中,( )能被( )整除,( )能整除( ),( )是( )的倍数,( )是( )的因数。(5)若AB=C(A、B、C都是非零自然数),则

2、A是B的( )数,B是A的( )数。(6)如果A、B是两个整数(B0),且AB2,那么A是B的 ,B是A的 。(7)判断并改正:因为76=42,所以42是倍数,7是因数。 ( ) 因为155=3,所以15和5是3的因数,5和3是15的倍数。( ) 5是因数,15是倍数。( ) 甲数除以乙数,商是15,那么甲数一定是乙数的倍数。( )(8)甲数3=乙数,乙数是甲数的( )。 A、倍数 B、因数 C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。例如:0.65=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。因此类似的:因为0.65=3,所以3是

3、0.6和5的倍数。是错误的说法。练习:(1)有52=2.5可知( ) A、5能被2除尽 B、2能被5整除 C、5能被2整除 D、2是5的因数,5是2的倍数(2)365=71可知( ) A、5和7是36的因数 B、5能整除36 C、36能被5除尽 D、36是5的倍数(3)属于因数和倍数关系的等式是( ) A、20.250.5 B、22550 C、200【知识点3】没有前提条件确定倍数与因数例如:36的因数有( )。确定一个数的所有因数,我们应该从1的乘法口诀一次找出。如:136=36、218=36、312=36、49=36、66=36因此36的所有因数为:1、2、3、4、6、9、12、18、36

4、重复的和相同的只算一个因数。一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。例如:7的倍数( )。确定一个数的倍数,同样依据乘法口诀,如:17=7、27=14、37=21、47=28、57=35还有很多。因此7的倍数有:7、14、21、28、35、42一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。练习:(1)20的因数有: (2)45的因数有: (3)24的倍数有: (4)17的倍数有: (5)下面的数,因数个数最多的是( )。 A、18 B、 36 C、40(6)判断并改正:14比12大,所以14的因数比12的因数多 ( ) 1是1,2,3,4,5 的因数 (

5、) 一个数的最小因数是1,最大因数是它本身。 ( ) 一个数的最小倍数是它本身 ( ) 12是4的倍数,8是4的倍数,12与8的和也是4的倍数。 ( ) 凡是8的倍数也一定是2的倍数。( )(7)幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数可能是多少?(8)小红到超市买日记本,日记本的单价已看不清楚,他买了3本同样的日记本,售货员阿姨说应付35元,小红认为不对。你能解释这是为什么吗? 【知识点4】有前提条件的情况下确定倍数与因数例如:25以内5的倍数有( 5、10、15、20、25 )。特别注意前提条件是25以内!例如:5、1、20、35、40、10、140、2

6、以上各数中,是20的因数的数有( );是20的倍数的数有( );既是20的倍数又是20的因数的数有( )。首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,特别注意没有在以上数字中出现的因数是不能填入括号的!练习:(1)100以内19的倍数有: (2)在4,6,8,10,12,16,18,20,22,24,28,32,36中 4的倍数: 36的因数:(3) 一个数既是6的倍数,又是60的因数,这个数可能是 (4) 用1、5、6、8、9组成的数中,是3的倍数的数有 是2的倍数的数有 。【知识点5】关于倍数因数的一些概念性问题一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

7、一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。1是任一自然数(0除外)的因数。也是任一自然数(0除外)的最小因数。一个数的因数最少有1个,这个数是1。除1以外的任何整数至少有两个因数(0除外)。一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。一个数的最小倍数=一个数的最大因数=这个数练习:(1) 一个数的倍数个数是( ),最小的倍数是( ),( )最大的倍数。(2) 一个数的因数的个数是( ),最小的因数是( ),最大的因数是( )。(3) 在研究因数和倍数时,我们所说的数一般指的是( )。(4) 判断并改正:一个数的因数都比他的倍数小。 ( ) 1是所有的自然数的

8、因数。 ( ) 一个数的因数一定小于他本身。 ( ) 一个数的倍数一定比他的因数大。 ( ) 任何一个数的倍数个数一定比因数个数多。 ( )二、2、3、5的倍数的特征【知识点1】2、3、5的倍数特征个位上是0,2,4,6,8的数都是2的倍数。例如:202、480、304,都能被2整除。个位上是0或5的数,是5的倍数。例如:5、30、405都能被5整除。一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。例如:12、108、204都能被3整除。个位上是0的数既是2的倍数又是5的倍数。例如:80、20、70、130等。个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。

9、例如:120、90、180、270等。自然数按能否被2 整除的特征可分为奇数和偶数。也就是说是2的倍数的数也叫做偶数(0也是偶数),不是2的倍数的数也叫做奇数。(因此在自然数中,除了奇数就是偶数)偶数偶数=偶数 偶数偶数=偶数 偶数偶数=偶数偶数奇数=奇数 偶数奇数=奇数 偶数奇数=偶数奇数奇数=偶数 奇数偶数=奇数 奇数奇数=奇数奇数奇数=偶数 无论多少个偶数相加都是偶数偶数个奇数相加是偶数 奇数个奇数相加是奇数练习:(1)在 27、68、44、72、587、602、431、800中,把奇数和偶数分别填在相应的圈内。奇数 偶数(2)按要求填数。 3的倍数: 2 ,3 , 1 , 7 4 ,

10、8 6 , 4 6。 2和3的倍数: 4 , 1 ,6 , 4 ,9 ,5, 6 。 2、3和5的倍数: 0, 2 。(3) 写出5个3的倍数的偶数: 写出3个5的倍数的奇数: (4)猜猜我是谁。 我比10小,是3的倍数,我可能是( )。 我在10和20之间,又是3和5的倍数,我是( )。 我是一个两位数且是奇数,十位数字和个位数字的和是18,我是( )。(5) 一个六位数548能同时被3、4、5整除,这样的六位数中最小的一个是( )。 一个四位数698 ,如果在个位上填上数字( )。那么这个数既是2的倍数,又是5的倍数。 117 既是3的倍数,又是5的倍数;249 既是2的倍数,又是3的倍数

11、。(6)把下面的数按要求填到合适的位置。 435、27、65、105、216、720、18、35、40 2的倍数( );3的倍数( ); 3的倍数( );2、5的倍数( ); 2、3的倍数( );2、3、5的倍数( )。(7) 同时是2和3的倍数中,最小的是( ),两位数中最大的是( )。(8) 能同时被、和整除的最小三位数是_ _,最大两位数是 _ _,最小两位数是_ _,最大三位数是_ _。 (9) 三个连续偶数的和是72,这三个偶数分别是( )、( )和( )。(10)226至少增加( )就是3的倍数,至少减少( )就是5的倍数。(11)用5、6、8排成一个三位数且是2的倍数,再排成一个

12、三位数,使他有因数5,各有几种排法?这些数中有3的倍数吗?(12)在( )里填上一个数,使87( )是3的倍数,共有( )种填法。 A、1 B、2 C、3 D、4 最小的四位奇数比最大的三位偶数大( )。 A、113 B、13 C、3A B是一个三位数,已知A+B=14,且A B是3的倍数, 中可能填的数有( )个。 A、1 B、2 C、3 D、4 (13)判断并改正:两个奇数的和,可能是偶数。( ) 最小的奇数是1,最小的偶数是2.( ) 一个自然数不是奇数就是偶数。( ) 个位上是3、6、9的数都是3的倍数。( ) 是3的倍数的数一定是9的倍数,是9的倍数的数一定是3的倍数。( ) 偶数的

13、因数一定比奇数的因数多。 ()【知识点2】一些特殊数的倍数的特征 一个数各位数上的和能被9整除,这个数就是9的倍数。 但是,能被3整除的数不一定能被9整除;能被9整除的数一定能被3整除。 一个数的末两位数能被4整除,这个数就是4的倍数。例如:16、404、1256都是4的倍数。一个数的末两位数能被25整除,这个数就是25的倍数。例如:50、325、500、1675都是25的倍数。 一个数的末三位数能被8(或125)整除,这个数就是8(或125)的倍数。例如:1168、4600、5000、12344都是8的倍数,1125、13375、5000都是125的倍数。 如果a和b都是c的倍数,那么ab和

14、ab一定也是c的倍数如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数练习:(1)五位数153能同时被5和9整除,这样的六位数有( )、( )。(2)六位数1576能同时被55整除,这样的六位数有( )、( )。(3)一个比20小的偶数,他有因数3,又是4的倍数,这个数是( )。【知识点3】最大公因数与最小公倍数(课本P7988) 由于一个数的因数个数是有限的而且最大的因数是这个数本身,最小的因数都是1.因此,几个数公共的因数也只考虑其最大的公共因数,而不考虑最小的公共因数。例如:12、16、18的最大公因数公共得因数有:1、2 12的因数有:1、2、3、4、6、12 16的因数有

15、:1、2、4、8、16 18的因数有:1、2、3、6、9、18 因此12、16、18的最大的公共因数即最大公因数是:2练习:(1)12的约数有( );18的约数有( );其中( )是12和 18的公约数;它们的最大公约数是( )。(2)求下面数的最大公约数24和36 54和72 7和63 12、18、36(3)长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)多少块?(4)动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得多少粒. 同样由于一

16、个数的倍数个数是无限的,但其最小的倍数是他本身,因此在求几个数的公倍数时只能考虑其最小的公共倍数。例如:2、4、5的最小公倍数 2的倍数有:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、 4的倍数有:4、8、12、16、20、24、28、32、36、40、 5的倍数有:5、10、15、20、25、30、35、40、公共的倍数有:20、40 所以2、4、5的最小公倍数是:20练习:(1)写出100以内的4的倍数有( );100以内的6的倍数有( );它们的公倍数有( );它们的最小公倍数是( )。(2)210与330的最小公倍数是

17、最大公约数的_倍.(3)是2、3、5的倍数的最小三位数是( )。一个数是5的倍数,又有因数3,也是7的倍数,这个数最小是( )。(4)求下面数的最小公倍数 12和18 13和11 13.和65 6、7、21(5)一串珠子,5粒5粒数,6粒6粒数,7粒7粒数,8粒8粒数都正好数完,这串珠子至少有多少粒?(6)在11999中的自然数中,是3的倍数,又是5的倍数的数一共有多少个?(7)能被3、7、8、11四个数同时整除的最大六位数是多少?(8)一堆棋子,6个6个地数余4个,9个9个地数余4个,10个10个地数余8个,这堆棋子至少有多少个?(10)判断并改正:有因数2,同时又是5的倍数的数一定是10的

18、倍数。( )三、 质数和合数【知识点1】质数和合数的相关定义一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数(两个因数)、合数(大于两个因数)和1(1个因数)。 100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。共25个。除1以外所有的质数都是奇数。 除1以外任意两个质数的和都是偶数最小的质数是2,最小的合数是

19、4质数质数=合数 合数合数=合数 质数合数=合数练习:(1) 像2、3、5、7这样的数都是( ),像10、6、30、15这样的数都是( )。(2) 20以内的质数有( ),合数有( )。(3) 自然数( )除外,按因数的个数可以分为( )、( )和( )。(4) 在16、23、169、31、27、54、102、111、97、121这些数中,( )是质数,( )是合数。(5) 用A表示一个大于1的自然数,A2必定是( )。A+A必定是( )。(6) 一个四位数,个位上的数是最小的质数,十位上是最小的数,百位上是最大的一位数,最高位上是最小的合数,这个数是( )。(7) 两个连续的质数是( )和(

20、 );两个连续的合数是( )和( )(8)两个质数的和是12,积是35,这两个质数是( )A. 3和8 B. 2和9 C. 5和7(9)判断并改正:一个自然数不是质数就是合数。( ) 所有偶数都是合数。( ) 一个合数的因数的个数比一个质数的因数的个数多。( ) 所有质数都是奇数。( ) 两个不同质数的和一定是偶数。( ) 三个连续自然数中,至少有一个合数。( ) 大于2的两个质数的积是合数。( ) 7的倍数都是合数。( ) 20以内最大的质数乘以10以内最大的奇数,积是171。( ) 2是偶数也是合数。( ) 1是最小的自然数,也是最小的质数。( ) 最小的自然数,最小的质数,最小的合数的和

21、是7。( )(10)下面是一道有余数的整数除法算式:AB=C R 1既不是质数也不是合数。 ( ) 个位上是3的数一定是3的倍数。( ) 所有的偶数都是合数。 ( ) 所有的质数都是奇数。 ( ) 两个数相乘的积一定是合数。 ( ) (11)写出一些三位数,这些数都同时是2、3、5的倍数。(每种写两个数)(6%)有两个数字是质数:有两个数字是合数:有两个数字是奇数:【知识点2】分解质因数(相加和相乘)把一个合数分成几个质数相乘的形式,叫做分解质因数。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。 分解质因数

22、,应该从最小的质数开始试积,直到每个因数都是质数时为止。例如:24=212 24=38 26 因此24=2223 24 23 22 42=(2)+(40)=(3)+(39)=(5)+(37) 练习:(1) 把48、51、28用几个质数相乘的形式分别表示出来。(2) 下列的数可以用那两个质数的和表示,并总结规律。 9=( )+( ) 42=( )+( ) 38=( )+( ) 80=( )+( ) 50=( )+( ) 62=( )+( )(3)用质数填空,质数不能重复18=( )+( )=( )+( )=( )( )( ) 12=( )( )( ) 30=( )( )( ) 8( )( )(

23、)(4)100以内的哪些数是三个不同质数的积?【知识点3】确定数字这类题关键在于准确掌握有关倍数、因数、奇数、偶数、质数、合数以及一些特殊的数。例如:两个质数的和是25,这两个质数的差是多少? 首先将25分解成两个质数的和的形式:25=2+23=3+22=5+20=7+18=11+14=13+12=17+8=19+6 通过分解只有2和23一种情况,因此这两个质数的差是23-2=21练习:(1)一个四位数,个位上的数是最小的奇数,十位上的数是最小的偶数,百位上的数是最小的合数,千位上的数既是质数又是偶数,这个四位数是多少?(2)猜电话号码0592A B C D E F G提示:A5的最小倍数 B

24、最小的自然数 C5的最大因数 D它既是4的倍数,又是4的因数 E它的所有因数是1,2,3,6 F它的所有因数是1, 3 G它只有一个因数 这个号码就是 (3)12399910001001的和是奇数还是偶数?请写出理由。(3%)(4)有两个质数,和是18,积是65,这两个质数是( )和( )。(5)在100150中,找出两个整数,使它们相乘的积等于91和187的乘积,这两个数分别是( )和( )。(6)连续五个奇数的积的末位数是( )。(7)两数相加的和是最大的两位数,两数相减的差是大于90的最小质数,那么这两个数的积是( )。(8)三个连续自然数的乘积是720,这三个数是( )、( )和( )

25、。(9)把六个数:85、51、33、91、65、77分成两组,每组三个数,每组中三个数的乘积相等。写出其中一个组的三个数( )(10)一个数的最大因数和最小倍数相加等于62,这个数是( )(11)一个数是18的倍数,它又是18的因数,猜一猜,这个数是( )。(12)一个数是48的因数,这个数可能是( ) 一个数既是48的因数,又是8的倍数,这个可能是( ) 一个数既是48的因数,又是8的倍数,同时还是3的倍数,这个数是( ) *短除法:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如:把18分解质因数为18=233 2 18 2 18 24 3 9 3 9 123 3 418=23

26、3 18和24的最大公因数是23=6, 18和24的最小公倍数是2334=72因数和倍数的实际应用:1、 有一块长方形钢板,长48厘米,宽42厘米,如果把它分割成面积相等的最大正方形钢板,不浪费边角料,也不计损耗,能分多少块?2、 有3种颜色的花,红花42朵,白花98朵,黄花70朵,把它们平均分开配起来扎成花束,每个花束中各种花一样多,使花尽可能多一些,可以分成多少个花束?每个花束各几朵什么样的花?3、 小张、小李、小阮是好朋友,他们每隔不同的天数去公园锻炼一次身体。小张3天去一次,小李4天去一次,小阮5天去一次。有一天,他们三人恰好在公园碰见了,问至少再过多少天他们才能再次相会?4、 汽车站是1路、8路和21路公交车的起点站,1路汽车每3分钟发一次车,8路汽车每5分钟发一次车,21路汽车每8分钟发一次车,问早上三路车同时在6点整发出一次车后,最早在几点几分才能再次发车?5、 一个班人数在30和50之间,如果分成3人一组、4人一组、6人一组或8人一组,都恰好分完,求这个班有多少人?6、 有一筐鸡蛋,当2个2个取,3个3个取,4个4个取,5个5个取时,最后都剩下1个,问筐中最少有多少个鸡蛋?专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁