《指数函数、对数函数、幂函数教案(共4页).docx》由会员分享,可在线阅读,更多相关《指数函数、对数函数、幂函数教案(共4页).docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上一、指数函数1形如的函数叫做指数函数,其中自变量是,函数定义域是,值域是2.指数函数恒经过点3.当时,函数单调性为在上时增函数;当时,函数单调性是在上是减函数二、对数函数1 对数定义: 一般地,如果()的次幂等于, 即,那么就称是以为底的对数,记作 ,其中,叫做对数的底数,叫做真数。 着重理解对数式与指数式之间的相互转化关系,理解,与所表示的是三个量之间的同一个关系。2. 对数的性质:(1)零和负数没有对数;(2);(3) 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。3. 两种特殊的对数是:常用对数:以10作底 简记为自然对数:以作底(为无理数)
2、,= 2.718 28 , 简记为4.对数恒等式(1);(2) 要明确在对数式与指数式中各自的含义,在指数式中,是底数,是指数,是幂;在对数式中,是对数的底数,是真数,是以为底的对数,虽然在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求对数就是求中的指数,也就是确定的多少次幂等于。三、幂函数1幂函数的概念:一般地,我们把形如的函数称为幂函数,其中是自变量,是常数;注意:幂函数与指数函数的区别2.幂函数的性质:(1)幂函数的图象都过点;(2)当时,幂函数在上单调递增;当时,幂函数在上 单调递减;(3)当时,幂函数是 偶函数 ;当时,幂函数是 奇函数 四、精典范例例1、已知f(x)=
3、x3();(1)判断函数的奇偶性;(2)证明:f(x)0.【解】:(1)因为2x10,即2x1,所以x0,即函数f(x)的定义域为xR|x0 .又f(x)=x3()=,f(x)=f(x),所以函数f(x)是偶函数。(2)当x0时,则x30,2x1,2x10,所以f(x)=又f(x)=f(x),当x0.综上述f(x)0.例2、已知f(x)=若f(x)满足f(x)=f(x).(1)求实数a的值;(2)判断函数的单调性。【解】:(1)函数f(x)的定义域为R,又f(x)满足f(x)= f(x),所以f(0)= f(0),即f(0)=0.所以,解得a=1,(2)设x1x2,得02x12x2,则f(x1
4、) f(x2)=所以f(x1) f(x2)0,即f(x1)f(x)的x的取值范围;(3)在(2)的范围内,求y=g(x) f(x)的最大值。【解】:(1)令,则x=2s,y=2t.因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log2(3s+1),即t=log2(3s+1),所以g(x)= log2(3s+1)(2)因为g(x)f(x)所以log2(3x+1)log2(x+1)即 (3)最大值是log23例4、已知函数f(x)满足f(x23)=lg(1)求f(x)的表达式及其定义域;(2)判断函数f(x)的奇偶性;(3)当函数g(x)满足关系fg(x)=lg(x+1)时,求g(3)的值.解:(1)设x23=t,则x2=t+3, 所以f(t)=lg所以f(x)=lg解不等式,得x3.所以f(x)-lg,定义域为(,3)(3,+).(2)f(-x)=lg=f(x).(3)因为fg(x)=lg(x+1),f(x)=lg,所以lg,所以().解得g(x)=,所以g(3)=5专心-专注-专业