《初二数学-全等三角形经典模型及例题详解(共18页).docx》由会员分享,可在线阅读,更多相关《初二数学-全等三角形经典模型及例题详解(共18页).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上辅助线模型考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有 SAS、ASA、AAS、SSS 和 HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。典型例题人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。全等三角形辅助线找全等三角形的方法:(1) 可以从结论出发,寻找要证明的相等的两条
2、线段(或两个角)分别在哪两个可能全等的三角形中;(2) 可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3) 可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4) 若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法:延长中线构造全等三角形;利用翻折,构造全等三角形;引平行线构造全等三角形;作连线构造等腰三角形。常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”。例 1:如图, ABC 是等腰直角三角形,BAC=90,BD 平分ABC 交 AC 于点 D,CE 垂直于 BD,
3、交 BD 的延长线于点E。求证:BD=2CE。思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用专心-专注-专业2)解题思路:要求证 BD=2CE,可用加倍法,延长短边,又因为有 BD 平分ABC 的条件,可以和等腰三角形的三线合一定理结合起来。解答过程:证明:延长 BA,CE 交于点 F,在 BEF 和 BEC 中,1=2,BE=BE,BEF=BEC=90,BEFBEC,EF=EC,从而 CF=2CE。又1+F=3+F=90,故1=3。在 ABD 和 ACF 中,1=3,AB=AC,BAD=CAF=90,ABDACF,BD=CF,BD=2CE。解题后的思考:等腰三角形“三线合一”
4、性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构 造全等三角形,利用的思维模式是全等变换中的“旋转”。例 2:如图,已知 ABC 中,AD 是BAC 的平分线,AD 又是 BC 边上的中线。求证:ABC 是等腰三角形。思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题
5、的突破口,本题给出了 AD 又是 BC 边上的中线这一条件,而且要求证 AB=AC,可倍长 AD 得全等三角形,从而问题得证。解答过程:证明:延长 AD 到 E,使 DE=AD,连接 BE。又因为 AD 是 BC 边上的中线,BD=DC又BDE=CDA BEDCAD,故 EB=AC,E=2,AD 是BAC 的平分线1=2,1=E,AB=EB,从而 AB=AC,即 ABC 是等腰三角形。解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再 将端点连结,便可得到全等三角形。(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用 的思维模式是三角形全等变换中的“对折”,所考知
6、识点常常是角平分线的性质定理或逆定理。例 3:已知,如图,AC 平分BAD,CD=CB,ABAD。求证:B+ADC=180思路分析:1) 题意分析:本题考查角平分线定理的应用。2) 解题思路:因为 AC 是BAD 的平分线,所以可过点C 作BAD 的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。解答过程:证明:作 CEAB 于 E,CFAD 于 F。AC 平分BAD,CE=CF。在 RtCBE 和 RtCDF 中,CE=CF,CB=CD,RtCBERtCDF,B=CDF,CDF+ADC=180,B+ADC=180。解题后的思考:关于角平行线的问题,常用两种辅助线;。见中点即联想到中位
7、线。(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式 是全等变换中的“平移”或“翻转折叠”例 4:如图, ABC 中,AB=AC,E 是 AB 上一点,F 是 AC 延长线上一点,连 EF 交 BC 于 D,若 EB=CF。求证:DE=DF。思路分析:1)题意分析: 本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路:因为 DE、DF 所在的两个三角形 DEB 与 DFC 不可能全等,又知 EB=CF所以需通过添加辅助线进行相等线段的等量代换:过 E 作 EG/CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。解答过程:证明:过E 作 EG/AC
8、 交 BC 于 G, 则EGB=ACB,又 AB=AC,B=ACB,B=EGB,EGD=DCF,EB=EG=CF,EDB=CDF, DGE DCF,DE=DF。解题后的思考:此题的辅助线还可以有以下几种作法:例 5:ABC 中,BAC=60,C=40,AP 平分BAC 交 BC 于 P,BQ 平分ABC 交 AC 于 Q,求证:AB+BP=BQ+AQ。思路分析:1) 题意分析:本题考查全等三角形常见辅助线的知识:作平行线。2) 解题思路:本题要证明的是 AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O 作BC 的平行线。得ADO
9、AQO。得到 OD=OQ,AD=AQ,只要再证出 BD=OD 就可以了。解答过程:证明:如图(1),过 O 作 ODBC 交 AB 于 D,ADO=ABC=1806040=80,又AQO=C+QBC=80,ADO=AQO,又DAO=QAO,OA=AO,ADOAQO,OD=OQ,AD=AQ,又ODBP,PBO=DOB, 又PBO=DBO,DBO=DOB,BD=OD,又BPA=C+PAC=70,BOP=OBA+BAO=70,BOP=BPO,BP=OB,AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。解题后的思考:(1) 本题也可以在 AB 上截取 AD=AQ,连 OD,构造全等三角形,
10、即“截长法”(2) 本题利用“平行法”的解法也较多,举例如下:如图(2),过 O 作 ODBC 交 AC 于 D,则ADOABO 从而得以解决。如图(5),过 P 作 PDBQ 交 AC 于 D,则ABPADP 从而得以解决。FCEBCE(SAS),2=1。又ADBC,ADC+BCD=180,DCE+CDE=90,2+3=90,1+4=90,3=4。在FDE 与ADE 中,FDEADE(ASA),DF=DA,CD=DF+CF,CD=AD+BC。解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补
11、短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。小结:三角形图中有角平分线,可向两边作垂线。也可将图对折看, 对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线, 三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半, 延长缩短可试验。线段和差不等式,移到同
12、一三角形。三角形中两中点, 连接则成中位线。三角形中有中线,延长中线等中线。同步练习(答题时间:90 分钟)这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!加油!你一定行!1、已知,如图 1,在四边形 ABCD 中,BCAB,AD=DC,BD 平分ABC。求证:BAD+BCD=180。2、已知,如图 2,1=2,P 为 BN 上一点,且 PDBC 于点 D,AB+BC=2BD。求证:BAP+BCP=180。3、已知,如图 3,ABC 中,C2B,12。求证:AB=AC+CD。试题答案1、分析:因为平角等于 180,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全
13、等的三角形,因而解题的关键在于构造直角三角形,可通过“截长法或补短法”来实现。证明:过点 D 作 DE 垂直 BA 的延长线于点 E,作 DFBC 于点 F,如图 1-2RtADERtCDF(HL),DAE=DCF。又BAD+DAE=180,BAD+DCF=180, 即BAD+BCD=1802、分析:与 1 相类似,证两个角的和是 180,可把它们移到一起,让它们成为邻补角,即证明BCP=EAP,因而此题适用“补短”进行全等三角形的构 造。证明:过点 P 作 PE 垂直 BA 的延长线于点 E,如图 2-2RtAPERtCPD(SAS),PAE=PCD又BAP+PAE=180。BAP+BCP=
14、1803、分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长 AC至 E 使 CE=CD,或在 AB 上截取 AF=AC。证明:方法一(补短法)延长 AC 到 E,使 DC=CE,则CDECED,如图 3-2AFDACD(SAS),DF=DC,AFDACD。又ACB2B,FDBB,FD=FB。AB=AF+FB=AC+FD,AB=AC+CD。4、证明:(方法一)将 DE 两边延长分别交 AB、AC 于 M、N, 在AMN 中,AM+ANMD+DE+NE;在BDM 中,MB+MDBD;在CEN 中,CN+NECE; 由 + 得 : AM+AN+MB+MD+CN+NEMD+DE+NE+B
15、D+CEAB+ACBD+DE+EC(方法二:图 4-2)延长 BD 交 AC 于 F,延长 CE 交 BF 于 G,在ABF、GFC 和GDE 中有: AB+AFBD+DG+GFGF+FCGE+CEDG+GEDE由 + 得 : AB+AF+GF+FC+DG+GEBD+DG+GF+GE+CE+DEAB+ACBD+DE+EC。5、分析:要证 AB+AC2AD,由图想到:AB+BDAD,AC+CDAD,所以有AB+AC+BD+CDAD+AD=2AD,左边比要证结论多 BD+CD,故不能直接证出此题,而由 2AD 想到要构造 2AD,即加倍中线,把所要证的线段转移到同一个三角形中去ACDEBD(SAS
16、)BE=CA(全等三角形对应边相等)在ABE 中有:AB+BEAE(三角形两边之和大于第三边)AB+AC2AD。6、分析:欲证 AC=BF,只需证 AC、BF 所在两个三角形全等,显然图中没有含有 AC、BF 的两个全等三角形,而根据题目条件去构造两个含有 AC、BF 的全等三角形也并不容易。这时我们想到在同一个三角形中等角对等边,能够把这两条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线段,所对的角相等即可。思路一、以三角形 ADC 为基础三角形,转移线段 AC,使 AC、BF 在三角形 BFH中方法一:延长 AD 到 H,使得 DH=AD,连结 BH,证明ADC 和HDB 全等,得AC=BH。通过证明H=BFH,得到 BF=BH。 BFDCHD(SAS) H=BFH AE=FE HAC=AFE又 AFE=BFH H=HAC CH=CA BF=ACBDF方法四:过 C 点作 CH 平行 BF,与 AD 的延长线相交于点H,证明CDH 和全等即可。