《初中数学-圆教案(共57页).doc》由会员分享,可在线阅读,更多相关《初中数学-圆教案(共57页).doc(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 单元要点分析 教学内容 1本单元数学的主要内容 (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角 (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系 (3)正多边形和圆 (4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积 2本单元在教材中的地位与作用 学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线圆的有关性质通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、
2、归纳的数学思想起着良好的铺垫作用本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程 教学目标 1知识与技能 (1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理 (2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线 (3)进一步认识和理解正多边形和圆的关系和正多边的有关计算 (4)熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算 2过程与方法 (1)积极引导学生
3、从事观察、测量、平移、旋转、推理证明等活动了解概念,理解等量关系,掌握定理及公式 (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流 (3)在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学思想 (4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力 (5)探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义 3情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用
4、现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望 教学重点 1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其运用 2在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等及其运用 3在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半及其运用 4半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径及其运用 5不在同一直线上的三个点确定一个圆 6直线L和O相交dr及其运用 7圆的切线垂直于过切点的半径及其运用 8经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题 9从圆外一点可以引圆的两条切线,它们的切线长
5、相等,这一点和圆心的连线平分两条切线的夹角及其运用 10两圆的位置关系:d与r1和r2之间的关系:外离dr1+r2;外切d=r1+r2;相交r2-r1dr1+r2;内切d=r1-r2;内含dAD (1) (2) (3)2如图2,O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是( )A4 B6 C7 D83如图3,在O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是( )AABCD BAOB=4ACD C DPO=PD二、填空题1如图4,AB为O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_ (4) (5)2P为O内一点,OP=3cm,O半径为
6、5cm,则经过P点的最短弦长为_;最长弦长为_3如图5,OE、OF分别为O的弦AB、CD的弦心距,如果OE=OF,那么_(只需写一个正确的结论)三、综合提高题1如图24-11,AB为O的直径,CD为弦,过C、D分别作CNCD、DMCD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由2如图,O直径AB和弦CD相交于点E,AE=2,EB=6,DEB=30,求弦CD长3(开放题)AB是O的直径,AC、AD是O的两弦,已知AB=16,AC=8,AD=8,求DAC的度数答案:一、1D 2D 3D二、18 28 10 3AB=CD三、1AN=BM 理由:过点O作OECD于点E,则CE=DE,且
7、CNOEDM ON=OM,OA-ON=OB-OM,AN=BM2过O作OFCD于F,如右图所示AE=2,EB=6,OE=2,EF=,OF=1,连结OD,在RtODF中,42=12+DF2,DF=,CD=2_B_A_C_O_D3(1)AC、AD在AB的同旁,如右图所示: AB=16,AC=8,AD=8, AC=(AB),CAB=60, 同理可得DAB=30, DAC=30 (2)AC、AD在AB的异旁,同理可得:DAC=60+30=90上课时间:课题目标(三维目标)了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的
8、应用 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题重点难点1重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用 2难点与关键:探索定理和推导及其应用教法讲授法 演示法 读书指导法学法特征联系法 点拨指导法教学过程:(详案)讨论修改 一、复习引入 (学生活动)请同学们完成下题已知OAB,如图所示,作出绕O点旋转30、45、60的图形 老师点评:绕O点旋转,O点就是固定点,旋转30,就是旋转角BOB=30 二、探
9、索新知如图所示,AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角 (学生活动)请同学们按下列要求作图并回答问题:如图所示的O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么? =,AB=AB 理由:半径OA与OA重合,且AOB=AOB 半径OB与OB重合 点A与点A重合,点B与点B重合 与重合,弦AB与弦AB重合 =,AB=AB 因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作(学生活动)老师点评:如图1,在O和O中,分别作相等的圆心角AOB
10、和AOB得到如图2,滚动一个圆,使O与O重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与OA重合 (1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A/B/ 现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 同样,还可以得到: 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等 (学生活动)请同学们现在给予说明一下 请三位同学到黑板板书
11、,老师点评 例1如图,在O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF (1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢? 分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可(2)OE=OF,在RtAOE和RtCOF中,又有AO=CO是半径,RtAOERtCOF,AE=CF,AB=CD,又可运用上面的定理得到= 解:(1)如果AOB=COD,那么OE=OF 理由是:AOB=COD
12、 AB=CDOEAB,OFCDAE=AB,CF=CD AE=CF 又OA=OC RtOAERtOCF OE=OF (2)如果OE=OF,那么AB=CD,=,AOB=COD 理由是: OA=OC,OE=OF RtOAERtOCF AE=CF 又OEAB,OFCD AE=AB,CF=CD AB=2AE,CD=2CF AB=CD =,AOB=COD 三、巩固练习 教材P89 练习1 教材P90 练习2 四、应用拓展 例2如图3和图4,MN是O的直径,弦AB、CD相交于MN上的一点P,APM=CPM (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由(2)若交点P在O的外部,上述结论是否成立
13、?若成立,加以证明;若不成立,请说明理由 (3) (4) 分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等 上述结论仍然成立,它的证明思路与上面的题目是一模一样的 解:(1)AB=CD 理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F APM=CPM 1=2 OE=OF 连结OD、OB且OB=OD RtOFDRtOEB DF=BE 根据垂径定理可得:AB=CD (2)作OEAB,OFCD,垂足为E、F APM=CPN且OP=OP,PEO=PFO=90 RtOPERtOPF OE=OF 连接OA、OB、OC、OD 易证RtOBERtODF,Rt
14、OAERtOCF 1+2=3+4 AB=CD 五、归纳总结(学生归纳,老师点评) 本节课应掌握: 1圆心角概念 2在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用 六、布置作业 1教材P94-95 复习巩固4、5、6、7、8 2选用课时作业设计第二课时作业设计 一、选择题 1如果两个圆心角相等,那么( ) A这两个圆心角所对的弦相等;B这两个圆心角所对的弧相等 C这两个圆心角所对的弦的弦心距相等;D以上说法都不对 2在同圆中,圆心角AOB=2COD,则两条弧AB与CD关系是( ) A=2 B C2 D不能确定 3如图5,O中,如
15、果=2,那么( )AAB=AC BAB=AC CAB2AC (5) (6) 二、填空题 1交通工具上的轮子都是做圆的,这是运用了圆的性质中的_ 2一条弦长恰好为半径长,则此弦所对的弧是半圆的_3如图6,AB和DE是O的直径,弦ACDE,若弦BE=3,则弦CE=_ 三、解答题 1如图,在O中,C、D是直径AB上两点,且AC=BD,MCAB,NDAB,M、N在O上 (1)求证:=;(2)若C、D分别为OA、OB中点,则成立吗?2如图,以ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若D=50,求的度数和的度数 3如图,AOB=90,C、D是AB三等分点,AB分别交OC、OD于点
16、E、F,求证:AE=BF=CD答案: 一、1D 2A 3C 二、1圆的旋转不变形 2或 33 三、1(1)连结OM、ON,在RtOCM和RtODN中OM=ON,OA=OB,AC=DB,OC=OD,RtOCMRtODN,AOM=BON, (2) 2BE的度数为80,EF的度数为503连结AC、BD,C、D是三等分点,AC=CD=DB,且AOC=90=30,OA=OC,OAC=OCA=75,又AEC=OAE+AOE=45+30=75,AE=AC,同理可证BF=BD,AE=BF=CD上课时间:课题目标(三维目标)1了解圆周角的概念 2理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等
17、于这条弧所对的圆心角的一半 3理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径 4熟练掌握圆周角的定理及其推理的灵活运用 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题重点难点1重点:圆周角的定理、圆周角的定理的推导及运用它们解题 2难点:运用数学分类思想证明圆周角的定理 3关键:探究圆周角的定理的存在教法讲授法 演示法 读书指导法学法理解记忆法 理清思路法教学过程:(详案)讨论修改一、复习引入 (学生活动)请同学们口答下面两个问题 1什么
18、叫圆心角? 2圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角 (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题 二、探索新知问题:如图所示的O,我们在射门游戏中,设E、F是球门,设球员们只能在所在的O其它位置射门,如图所示的A、B、C点通过观察,我们可以发现像EAF、EBF、ECF这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角
19、现在通过圆周角的概念和度量的方法回答下面的问题 1一个弧上所对的圆周角的个数有多少个? 2同弧所对的圆周角的度数是否发生变化? 3同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言 老师点评: 1一个弧上所对的圆周角的个数有无数多个 2通过度量,我们可以发现,同弧所对的圆周角是没有变化的 3通过度量,我们可以得出,同弧上的圆周角是圆心角的一半 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半” (1)设圆周角ABC的一边BC是O的直径,如图所示 AOC是ABO的外角 AOC=ABO+BAO OA=OB A
20、BO=BAO AOC=ABO ABC=AOC(2)如图,圆周角ABC的两边AB、AC在一条直径OD的两侧,那么ABC=AOC吗?请同学们独立完成这道题的说明过程 老师点评:连结BO交O于D同理AOD是ABO的外角,COD是BOC的外角,那么就有AOD=2ABO,DOC=2CBO,因此AOC=2ABC(3)如图,圆周角ABC的两边AB、AC在一条直径OD的同侧,那么ABC=AOC吗?请同学们独立完成证明 老师点评:连结OA、OC,连结BO并延长交O于D,那么AOD=2ABD,COD=2CBO,而ABC=ABD-CBO=AOD-COD=AOC 现在,我如果在画一个任意的圆周角ABC,同样可证得它等
21、于同弧上圆心角一半,因此,同弧上的圆周角是相等的 从(1)、(2)、(3),我们可以总结归纳出圆周角定理: 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 进一步,我们还可以得到下面的推导: 半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径 下面,我们通过这个定理和推论来解一些题目 例1如图,AB是O的直径,BD是O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? 分析:BD=CD,因为AB=AC,所以这个ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是BAC的平分线即可 解:BD=CD 理由是:如图24-30,连接A
22、D AB是O的直径 ADB=90即ADBC 又AC=AB BD=CD 三、巩固练习 1教材P92 思考题 2教材P93 练习 四、应用拓展例2如图,已知ABC内接于O,A、B、C的对边分别设为a,b,c,O半径为R,求证:=2R 分析:要证明=2R,只要证明=2R,=2R,=2R,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行 证明:连接CO并延长交O于D,连接DB CD是直径 DBC=90 又A=D 在RtDBC中,sinD=,即2R= 同理可证:=2R,=2R =2R 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1圆周角的概念; 2圆周角的定理:在同圆或等
23、圆中,同弧或等弧所对的圆周角相等,都相等这条弧所对的圆心角的一半; 3半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径 4应用圆周角的定理及其推导解决一些具体问题 六、布置作业 1教材P95 综合运用9、10、11 拓广探索12、132选用课时作业设计 上课时间:课题24.2 与圆有关的位置关系(第1课时)目标(三维目标)1理解并掌握设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr 点P在圆上d=r 点P在圆内dr点P在圆外;如果d=r点P在圆上;如果dr 点P在圆上d=r点P在圆内dr 这个结论的出现,对于我们今后解题、判定点P是否
24、在圆外、圆上、圆内提供了依据 下面,我们接下去研究确定圆的条件: (学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆 (1)作圆,使该圆经过已知点A,你能作出几个这样的圆? (2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么? (3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆? 老师在黑板上演示:(1)无数多个圆,如图1所示 (2)连结A、B,作AB的垂直平分线,则垂直平分线上的
25、点到A、B的距离都相等,都满足条件,作出无数个其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示 (1) (2) (3) (3)作法:连接AB、BC; 分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;以O为圆心,以OA为半径作圆,O就是所要求作的圆,如图3所示在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆 即:不在同一直线上的三个点确定一个圆 也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆 外接圆的圆心是三角形三条边垂直
26、平分线的交点,叫做这个三角形的外心 下面我们来证明:经过同一条直线上的三个点不能作出一个圆 证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1L,L2L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾所以,过同一直线上的三点不能作圆 上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立这种证明方法叫做反证法 在某些情景下,反证法是很有效的证明方法 例1某地出土一明代残破圆形瓷盘,如图所示为复制该瓷盘确定其圆心和半径,请在图中用直