《浙教版2018中考复习知识点+练习专题十:压轴题(共14页).doc》由会员分享,可在线阅读,更多相关《浙教版2018中考复习知识点+练习专题十:压轴题(共14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上一对一个性化教案学生姓名年级科目数学 授课教师日期 时间段课时授课类型新课/复习课/作业讲解课教学目标教学内容专题十:压轴题课 堂 练 习一、选择题1.在ABC中,AB10,AC2,BC边上的高AD6,则另一边BC等于( )A10 B8 C6或10 D8或102.若x0是方程ax2+2x+c=0(a0)的一个根,设M=1ac,N=(ax0+1)2,则M与N的大小关系正确的为()AMN BM=N CMN D不确定3.如图,在RtABC中,C=90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E若BC=3,则DE的长为()A1 B2 C3 D4 图3 图4 图
2、54.如图,AD是ABC的中线,ADC=45,把ADC沿着直线AD对折,点C落在点E的位置如果BC=6,那么线段BE的长度为()A6 B6 C2 D35.二次函数y=ax2+bx+c(a0)和正比例函数y=x的图象如图所示,则方程ax2+(b)x+c=0(a0)的两根之和()A大于0 B等于0 C小于0 D不能确定6.如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;CF2AF;DFDC;tanCAD其中正确的结论有( )A.4个 B3个 C2个 D1个 图6 图7 图87.如图,在RtAOB中,两直角边OA、OB分别在x轴的负半轴和y轴
3、的正半轴上,将AOB绕点B逆时针旋转90后得到AOB若反比例函数的图象恰好经过斜边AB的中点C,SABO=4,tanBAO=2,则k的值为()A3 B4 C6 D88.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A1: B1:2 C2:3 D4:99.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A671 B672 C673 D67410.如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程a
4、x2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()A4个 B3个 C2个 D1个二、填空题11.如图,在RtABC中,B90,AB4,BCAB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是_ 图11 图12 图1312.如图,直线yxb与直线ykx6交于点P(3,5),则关于x的不等式xbkx6的解集是_13.在矩形ABCD中,B的角平分线BE与AD交于点E,BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= (结果保留根号)14.如图,已知点A(1,2)是反比
5、例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若PAB是等腰三角形,则点P的坐标是 图14 图1515.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 三、解答题16.如图,在RtABC中,C=90,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的
6、切线;(2)若OB=10,CD=8,求BE的长17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1m2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?18.已知在关于x的分式方程和一元二次方程(2k)x2+3mx+(3k)n=0中,k、m、n均为实数,方程的根为非负数(1)求k的取值范围;来源:Zxxk.Com(2)当方程有两
7、个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程的整数根;(3)当方程有两个实数根x1、x2,满足x1(x1k)+x2(x2k)=(x1k)(x2k),且k为负整数时,试判断|m|2是否成立?请说明理由19.如图,直线y=x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时
8、,试判断AFG与AGB是否相似,并说明理由(4)是否存在t的值,使AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=x+4问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,
9、连接OP,将OAP沿着OP折叠,点A落在点A的位置,当点A在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x2交于B,C两点(1)求抛物线的解析式及点C的坐标;(2)求证:ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MNx轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由来源:学|科来源:学科网22.已知四边形ABCD是菱形,AB=4,ABC=60,EAF的两边分别与射线CB,DC相交于点E,F,且EA
10、F=60(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且EAB=15时,求点F到BC的距离23.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(1,0),将此平行四边形绕点O顺时针旋转90,得到平行四边形ABOC(1)若抛物线过点C、A、A,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,AMA的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动
11、点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q 构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标 24.如图1,ABC是等腰直角三角形,BAC 90,ABAC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BDCF,BDCF成立 (1)当ABC绕点A逆时针旋转(090)时,如图2,BDCF成立吗?若成立,请证明;若不成立,请说明理由 (2)当ABC绕点A逆时针旋转45时,如图3,延长DB交CF于点H. 求证:BDCF; 当AB2,AD3时,求线段DH的长课 外 练 习一、选择题1.下列图案中既是轴对称图形又是中心对称图形的是()A B C D2
12、.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()21*comA B C D3.如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则ABD的面积是()【来源:21cnj*y.co*m】A15 B30 C45 D604.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=831=332=
13、933=27新运算log22=1log24=2log28=3log33=1log39=2log327=3根据上表规律,某同学写出了三个式子:log216=4,log525=5,log2=1其中正确的是()A B CD5.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()ACnH2n+2BCnH2nCCnH2n2DCnHn+36.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当CDE的
14、周长最小时,点E的坐标为()A(3,1) B(3,) C(3,) D(3,2) 图6 图7 图8 图97.如图,已知在RtABC中,ABC=90,点D沿BC自B向C运动(点D与点B、C不重合),作BEAD于E,CFAD于F,则BE+CF的值()A不变 B增大 C减小 D先变大再变小8.在平面直角坐标系中,二次函数y=x2+2x3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中3x1x20,则下列结论正确的是()Ay1y2 By1y2 Cy的最小值是3 Dy的最小值是49.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端
15、点A,B重合),作CDOB于点D,若点C,D都在双曲线y=上(k0,x0),则k的值为()A25B18C9D910.n是整数,式子 1(1)n(n21)计算的结果()A是0 B总是奇数C总是偶数 D可能是奇数也可能是偶数二、填空题11.有一面积为5的等腰三角形,它的一个内角是30,则以它的腰长为边的正方形的面积为 12.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EFMN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30方向,此时,其他同学测得CD=10米请根据这些数据求出河的宽度为 米(结果保留根号)1
16、3.观察下列等式:在上述数字宝塔中,从上往下数,2016在第 层14.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE5cm, 且tanEFC,那么矩形ABCD的周长_cm15.已知关于x的二次函数y=ax2+bx+c的图象经过点(2,y1),(1,y2),(1,0),且y10y2,对于以下结论:abc0;a+3b+2c0;对于自变量x的任意一个取值,都有x2+x;在2x1中存在一个实数x0,使得x0=,其中结论错误的是 (只填写序号)三、解答题16.如图,将矩形纸片ABCD(ADAB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应
17、点分别为点G,H,折痕分别与边BC,AD相交于点E,F(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围17.如图,在RtABC中,C=90,以BC为直径的O交斜边AB于点M,若H是AC的中点,连接MH(1)求证:MH为O的切线(2)若MH=,tanABC=,求O的半径(3)在(2)的条件下分别过点A、B作O的切线,两切线交于点D,AD与O相切于N点,过N点作NQBC,垂足为E,且交O于Q点,求线段NQ的长度18.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司已知C乡需要农机34台,D乡需要农机
18、36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a200)作为优惠,其它费用不变,如何调运,使总费用最少?19.在ABC中,AB=6,AC=BC=5,将ABC绕点A按顺时针方向旋转,得到ADE,旋转角为(0180),点B的对
19、应点为点D,点C的对应点为点E,连接BD,BE(1)如图,当=60时,延长BE交AD于点F求证:ABD是等边三角形;求证:BFAD,AF=DF;请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当DAG=ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值温馨提示:考生可以根据题意,在备用图中补充图形,以便作答20.如图所示,在平面直角坐标系中,过点A(,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x22x3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直
20、线AC上,且DB=DC,求点D的坐标;来源:学&科&网Z&X&X&K(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由21.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当PAD的周长最小时,求点P的坐标22.如图,在平面直角坐标系中,AOB的顶点O为坐标原点,点A的坐标为(4,0),点
21、B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE来源:Zxxk.Com(1)线段OC的长为 ;(2)求证:CBDCOE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a2,CD1E1的面积为S当1a2时,请直接写出S与a之间的函数表达式;在平移过程中,当S=时,请直接写出a的值23.如图1,在矩形ABCD中,BCAB,BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OKAF,交AD于点K,交BC
22、于点G(1)求证:DOKBOG;AB+AK=BG;(2)若KD=KG,BC=4求KD的长度;如图2,点P是线段KD上的动点(不与点D、K重合),PMDG交KG于点M,PNKG交DG于点N,设PD=m,当SPMN=时,求m的值24.如图1,抛物线y=ax26x+c与x轴交于点A(5,0)、B(1,0),与y轴交于点C(0,5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D2-1-c-n-j-y(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(2,3),请求出此时APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2若APE=CPE,求证:;来源:Zxxk.ComAPE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由专心-专注-专业