MATLAB决策树算法(共3页).docx

上传人:飞****2 文档编号:14480965 上传时间:2022-05-04 格式:DOCX 页数:3 大小:15.23KB
返回 下载 相关 举报
MATLAB决策树算法(共3页).docx_第1页
第1页 / 共3页
MATLAB决策树算法(共3页).docx_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《MATLAB决策树算法(共3页).docx》由会员分享,可在线阅读,更多相关《MATLAB决策树算法(共3页).docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上MATLAB决策树算法% I. 清空环境变量clear allclcwarning off% II. 导入数据 第一列是序号 第二列是良性还是恶性(乳腺癌) 后面是特征属性30个load data.mat% 1. 随机产生训练集/测试集a = randperm(569);Train = data(a(1:500),:); %产生500个训练集Test = data(a(501:end),:); %剩下的是测试集 69个% 2. 训练数据P_train = Train(:,3:end);T_train = Train(:,2);% 3. 测试数据P_test = Tes

2、t(:,3:end);T_test = Test(:,2);% III. 创建决策树分类器ctree = ClassificationTree.fit(P_train,T_train);% 1. 查看决策树视图view(ctree);view(ctree,mode,graph);% IV. 仿真测试T_sim = predict(ctree,P_test);% V. 结果分析count_B = length(find(T_train = 1);count_M = length(find(T_train = 2);rate_B = count_B / 500;rate_M = count_M /

3、 500;total_B = length(find(data(:,2) = 1);total_M = length(find(data(:,2) = 2);number_B = length(find(T_test = 1);number_M = length(find(T_test = 2);number_B_sim = length(find(T_sim = 1 & T_test = 1);number_M_sim = length(find(T_sim = 2 & T_test = 2);disp(病例总数: num2str(569). 良性: num2str(total_B). 恶性

4、: num2str(total_M);disp(训练集病例总数: num2str(500). 良性: num2str(count_B). 恶性: num2str(count_M);disp(测试集病例总数: num2str(69). 良性: num2str(number_B). 恶性: num2str(number_M);disp(良性乳腺肿瘤确诊: num2str(number_B_sim). 误诊: num2str(number_B - number_B_sim). 确诊率p1= num2str(number_B_sim/number_B*100) %);disp(恶性乳腺肿瘤确诊: nu

5、m2str(number_M_sim). 误诊: num2str(number_M - number_M_sim). 确诊率p2= num2str(number_M_sim/number_M*100) %); % VI. 叶子节点含有的最小样本数对决策树性能的影响leafs = logspace(1,2,10);N = numel(leafs);err = zeros(N,1);for n = 1:N t = ClassificationTree.fit(P_train,T_train,crossval,on,minleaf,leafs(n); err(n) = kfoldLoss(t);en

6、dplot(leafs,err);xlabel(叶子节点含有的最小样本数);ylabel(交叉验证误差);title(叶子节点含有的最小样本数对决策树性能的影响)% VII. 设置minleaf为13,产生优化决策树OptimalTree = ClassificationTree.fit(P_train,T_train,minleaf,13);view(OptimalTree,mode,graph)% 1. 计算优化后决策树的重采样误差和交叉验证误差resubOpt = resubLoss(OptimalTree)lossOpt = kfoldLoss(crossval(OptimalTree

7、)% 2. 计算优化前决策树的重采样误差和交叉验证误差resubDefault = resubLoss(ctree)lossDefault = kfoldLoss(crossval(ctree)% VIII. 剪枝,bestlevel = cvLoss(ctree,subtrees,all,treesize,min)cptree = prune(ctree,Level,bestlevel);view(cptree,mode,graph)% 1. 计算剪枝后决策树的重采样误差和交叉验证误差resubPrune = resubLoss(cptree)lossPrune = kfoldLoss(crossval(cptree)专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁