《《数学思想与方法》形成性考核册作业3答案(共4页).doc》由会员分享,可在线阅读,更多相关《《数学思想与方法》形成性考核册作业3答案(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上数学思想与方法形成性考核册作业4参考答案 一、简答题1、简述国家数学课程标准的几个主要特点。答:把“现实数学”作为数学课程的一项内容;把“数学化”作为数学课程的一个目标;把“再创造”作为数学教育的一条原则。把“已完成的数学”当成是“未完成的数学”来教,给学生提供“再创造”的机会;把“问题解决”作为数学教学的一种模式;把“数学思想方法”作为课程体系的一条主线。要求学生掌握基本的数学思想方法;把“数学活动”作为数学课程的一个方面。强调学生的数学活动,注重“向学生提供充分从事数学活动的机会”,帮助他们“获得广泛的数学活动的经验”;把“合作交流”看成学生学习数学的一种方式。要
2、让学生在解决问题的过程中“学会与他人合作”,并能“与他人交流思维的过程和结果”;把“现代信息技术”作为学生学习数学的一种工具。2、简述数学思想方法教学的主要阶段。答:数学思想方法教学主要有三个阶段:多次孕育、初步理解和简单应用三个阶段。二、论述题1、试述小学数学加强数学思想方法教学的重要性。答:数学思想方法是联系知识与能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。具体表现在:(1)掌握数学思想方法能更好地理解数学知识。(2)数学思想方法对数学问题的解决有着重要的作用。(3)加强数学思想方法的教学是以学生发展为本的必然要求。2、简述数学思想方法教学
3、应注意哪些事项?答:数学思想方法教学应注意以下事项:(1)把数学思想方法的教学纳入教学目标;(2)重视数学知识发生、发展的过程,认真设计数学思想方法教学的目标;(3)做好数学思想方法教学的铺垫工作和巩固工作;(4)不同数学思想方法应有不同的教学要求;(5)注意不同数学思想方法的综合应用。三、分析题1、利用下列材料,请你设计一个“数形结合”教学片断。材料:如图13-3-18所示,相邻四点连成的小正方形面积为1平方厘米。(1)分别连接各点,组成下面12个图形,你发现有什么排列规律?(2)求出各图形外面一周的点子数、中间的点子数以及各图形的面积,找出一周的点子数、中间的点子数、各图形的面积三者之间的
4、关系。教学片断设计如下:一、找图的排列规律师:同学们看图,找出图的排列规律来。(学生可以讨论)生:老师我们发现,第一行的图中间没有点,第二行的图中间有一个点,第三行的图中间有两个点。师:非常好!二、数一数每个图周边的点数师:现在我们来数一数每个图周边的点数。并将结果填入下列表中。(师生一起数)三、计算面积师:数完边点数,我们再来计算每个图的面积。结果也填入表中。(师生一起计算面积,过程略) 图形边上点数内部点数面积401(2)602(3)803(4)1406(5)412(6)613(7)814(8)1417(9)423(10)624(11)825(12)1428四、寻找每一列三个数之间的规律师
5、:我们根据这个表,找一找每列三个数之间的关系。告诉同学们,希望找到相同的规律。生:第一列,边点数等于面积乘以4。师:这个规律能否用到第二列呢?生:不能,因为6不等于2乘以4。生2:第一列,边点数除以2,减去面积等于1。师:好!看看这个规律能否用到第二列?生:能。还能用到第三、第四列。生2:老师,这个规律不能用到第五列。师:很好!我们看看这个规律到第五列可以怎样改一改。生:我发现了,边点数除以2,加上内点数,再减去面积等于1。师:非常好!大家一起算一算,是不是每一列都具有这个规律。五、总结师:我们把发现的规律总结成公式:边点数/2内点数面积1也可以写为:边点数/2内点数1面积2、假定学生已有了除
6、法商的不变性知识和经验,在学习分数的性质时,请你设计一个孕育“类比法”教学片断。提示:所设计的教学片断要求(1)以小组合作探究的形式,让学生举例说明除法的被除数和除数与分数的分子和分母之间存在什么样的关系(相似关系)?商与分数又有什么关系(相似关系)?那么与被除数、除数同时扩大或缩小相同的倍数其商不变相似的结论又是什么呢?通过一系列层层递进式的问题情境,把学生的思维导向分数与商相似的特征上来,创设学生自主探究分数的性质的全过程;(2)教学设计要体现教师引导学生归纳概括“分数的性质”的过程,并重视学习方法指导,使学生初步领会用“类比法”获取新知识的策略。教学片断设计如下:一、回忆除法和分数的有关
7、概念师:同学们还记得除法的哪些概念和记号?生:被除数除数商师:对。我们再回忆分数的概念和记号。师:好。大家一起来比较这两个概念的相似性。生:商好比分数,被除数好比分子。除数好比分母。二、回忆除法的性质师:很好。现在我们回忆除法有哪些性质。生:被除数与除数同时扩大,商不变。生2:被除数与除数同时缩小,商也不变。三、类比出分数的性质师:对。刚才我们知道商好比分数,因此我们可以问:除法的这些性质是否可以类比到分数上来呀?生:可以。师:应该怎样类比呢?生:分子与分母同时扩大,分数不变。生2:分子与分母同时缩小,分数不变。四、总结成公式师:很好!这些性质怎样用公式表示呢?生:可以列表如下: 除法分数除法的表示:AB分数的表示:性质(一):若M0,则(AM)(BM)= AB分数的性质(一):若M0,则性质(二):若M0,则(AM)(BM)= AB分数的性质(二):若M0,则性质(三):ABC=A(BC)分数的性质(三):性质(四):(AB)(CD)= (AD)(BC)专心-专注-专业