《单闭环可逆直流调速系统(共18页).doc》由会员分享,可在线阅读,更多相关《单闭环可逆直流调速系统(共18页).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上运动控制系统课程设计课题:单闭环可逆直流调速系统 系 别:电气与信息工程学院 专 业: 自动化 姓 名: 学 号: 成 绩: 河南城建学院2015年 12月 31日专心-专注-专业目录 一、设计目的在电力拖动系统中,调节电压的直流调速系统是应用最为广泛的一种调速方法,除了利用晶闸管获得可控的直流电源外,还可以利用其他可控的电力电子器件,采用脉冲调制的方法,直接将恒定的直流电压调制为极性可变、大小可调的直流电压,用以实现直流电机电枢电压的平滑调节,构成脉宽直流调速系统。本设计采用了PWM脉宽调制的方法,完成了带转速负反馈的单闭环直流调速系统的设计及实验。本设计重点介绍了
2、单闭环可逆直流调速系统的总体结构、设计原理及参数优化设计方法,提供了通过matlab仿真进行实验效果预分析和校正处理,得到较为理想结果后进行实际操作和调试的实验思路。二、设计任务及要求本次运动控制课程设计要求自拟控制系统性能指标的要求(调速范围、静差率、超调量、动态速降、调节时间等)设计系统原理图,完成元器件的选择,选择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。为了进行定量的计算,选一组电机参数:功率,额度电压,额定电流,额定转速,电枢电阻,主电路总电阻,。最大给定电压,整定电流反馈电压.要求系统调速范围,静差率,。三、总体方案设计为了提高直流系统的动静态性能指标,通常采用单闭环
3、控制系统。对调速系统的要求不高的场合,采用单闭环系统,而对调速系统指标要求高的采用多闭环系统。按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。在单闭环系统中,转速单闭环运用较多。在本设计中,转速单闭环实验是将反应转速变化的电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移向控制电压,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈的闭环系统。电机的转速随给定的电压变化,电机最高转速由速度调节器输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差
4、,要想消除上述误差,则需将调节器换成PI(比例积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围变化。四、硬件电路设计4.1.1 直流调速系统稳态性能分析直流电动机具有良好的起、制动性能,可在大范围内平滑调速。广泛应用于需要调速和快速正反向变化的电力拖动领域中。直流电动机的转速和其它参量之间的稳态关系可用(11)式表示 (11)式中: U电枢供电电压; 由电机结构决定的电动势常数;R电枢回路总电阻; n电动机转速;I电枢电流; 调节电动机的转速可以有三种方法:(1)调节电枢的供电电压U来调节转速;改变电枢回路电阻R或减弱
5、电机励磁磁通调节。在自动控制的直流调速系统往往以改变电压调速为主。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在某转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响。 4.1.2静态性能指标1.调速范围电动机在额定负载运行时,系统限定的最高转速与最低转速之比叫做调速范围,用D来表示 (12)2. 静差率 系统在一转速下运转的时候,当负载由空载增加到额定值的时候对应的转速降 落和理想空载转速的比值,称作为静差率s,表示为 (13) 显
6、而易见,静差率它是用来衡量调速系统在负载发生变化的时候其转速的稳定度。同样情况下当机械特性硬度变大,就会变小,从而静差率也就变小,最终转速的稳定度就提高了。事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围,反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。4.1.3 基于稳态性能指标闭环直流调速系统设计调速原理根据自动控制原理,反馈控制闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。调速系
7、统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统能减少转速降落。图一 转速负反馈直流调速系统结构框图在有反馈的闭环直流调速系统里,安装测速发电机 TG与电动机同轴运转,这时可以引出负反馈电压,它被调量转速成正比。和给定电压比较后,就得出转速偏差电压Un,在经过放大器 A的放大作用,最总控制电力电子变图二 闭环系统静特性和开环机械特性的关系换器UPE的电压得以产生,用它来控制电动机转速n。图三 转速闭环直流调速系统稳态结构框图由图看来,闭环系统能够减少稳态速降的实质在于它的自动调节作用,在于它能随着负载的变化而相应地改变电枢电压,以补偿电枢回路电阻压降。带有比例放大器的反馈控
8、制闭环调速系统是有静差系统,而积分控制可以使系统在无静差的条件下恒速运行,实现无静差调速。根据设计要求,要求稳态无静差,则要求调节器带有积分环节。4.1.4 直流调速系统动态性能分析 动态性能指标是实际生产对控制系统的动态性能有一定的要求,经过折算和量化表示出来的。其动态性能指标包括了其对给定的跟随性能指标和其对扰动输入的抗扰性能指标。1.跟随性能指标在给定信号R(t)的作用下,系统输出量C(t)的变化规律可以通过跟随性能指标来描述。当给定信号不同时,输出的响应也就不一样。通常情况下输出量的初始值为零的时候,在给定信号阶跃变化的情况下的过渡过程来作为典型的跟随过程,这时候的动态响应又我们又叫做
9、阶跃响应。在一般的情况下我们希望阶跃响应中的输出量c(t)和其稳态值的尽可能的小,而达到的时间尽可能的快。通常用用来作为阶跃响应的跟随性能的指标有:上升时间,超调量和调节时间三个量。下面分别介绍:1).上升时间 在典型的阶跃响应跟随的过程中,输出量从零开始起第一次上升到稳态值是所用的时间我们称之为上升时间,它可以表示系统动态响应的快速性,见下图图四 输出量与时间关系2).超调量在典型的阶跃响应跟随系统中,系统输出量超出了稳态值的最大偏离量在与稳态值的比值,叫做超调量: 反映了系统的相对稳定性。系统的超调量越小,则表示系统的相对稳定性越好,即就是系统的动态响应比较平稳。3).调节时间调节时间是衡
10、量系统的整个调节过程快慢的物理量。从原则上讲它是从给定量阶跃变化起到输出量完全稳定下来时的时间。但对于线性的控制系统而言,原则上要等到才是真正的稳定下来了,可是在实际的系统中由于存在一些非线性的因素致使其不用这样。通常,我们一般在响应曲线的稳态值附近,取的范围作为允许的误差带并认为响应曲线达到了并且再也不超出次范围的时候所需要的最短的时间定义为调节时间,如图12。 2.抗扰性能指标抗扰过程是在系统的稳定运行中,突然加上负载阶跃扰动后输出的动态相应过程,并根据这个指标来定义抗扰动态的性能指标,见图13。同常我们用到的抗扰性能指标分为动态降落和恢复时间:1).动态降落动态降落:在系统稳定运行时,突
11、然给其加一定的扰动而后引起的转速的最大降落值。用输出量原稳态值的百分数来表示。输出量在动态降落后慢慢的恢复最后达到新的稳态值是该系统在此次扰动下的稳态降落。 2).恢复时间系统从阶跃扰动的作用开始计时直到系统的输出量基本上恢复到稳态时,即距离新的稳态值的差进入了某一基准量的范时总共花费的时间,我们定义其为恢复时间,其中叫做抗扰指标中输出量的基准值。在实际系统中由于对于各种动态指标的要求不同工程各有不同,所以通常要根据生产机械的具体要求而设定。不过一般来说,调速系统的动态指标以抗扰性能为主。4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 反馈控制系统对被反馈环包围的前向通
12、道上的扰动都有抑制功能。 扰动除给定信号外,作用在控制系统各环节上的一切会引起输出量变化的因素都叫做“扰动作用”。 这里调速系统的扰动源有以下几种:(1)负载变化的扰动(使变化);(2)交流电源电压波动的扰动(使变化);(3)电动机励磁的变化的扰动(造成变化 );(4)放大器输出电压漂移的扰动(使变化);(5)温升引起主电路电阻增大的扰动(使R变化);(6)检测误差的扰动(使变化)。图五 闭环调速系统的给定作用和扰动作用 在设计闭环调速系统,常常会遇到动态稳定性和稳态性能指标发生矛盾的情况,这是可以设计动态校正环节,来同时满足动态稳定性和稳态性能指标。由静态设计要求得,调节器要包含积分环节,所
13、以可以选择比例积分调节器或者比例积分微分调节器。本设计中选择了后者,原因在后面的内容中加以详述。4.2、控制系统动、静态数学模型的建立4.2.1 双极性控制的桥式可逆PWM变换器的工作原理PWM系统在许许多多的方面都有很大的优点例如: (1) PWM系统的主电路线路简单,需用的功率器件少;(2) 由于其功率开关器件工作在开关状态,以致其导通损耗小,而开关频率适当时,开关损耗也不是很大,从而装置效率较高;(3) 系统的开关频率高,因此其电流容易连续,谐波少,电机损耗及发热都比较小;(4)直流电源采用不控整流时,电网效率因数比相控整流器高。(5)低速性能好,稳速精度高,调速范围宽,可达1:1000
14、0左右;(6)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗干扰能力强。4.2.2桥式可逆PWM变换器 桥式(亦称H型)电路如图所示。桥式可逆PWM变换器 双极式控制可逆PWM变换器的4个驱动电压波形如下图所示。双极式控制可逆PWM变换器的驱动电压、输出电压和电流波形 它们之间的关系是:Ug1=Ug4=-Ug2=-Ug3。当变换器在一个开关周期内时,在0tton的时间段里,Uab= Us,它的电枢电流Id会沿着图中所示的回路1流动;而在tontT/2,则Uab的平均值就为正,电动机就正转,反之,则反转;当正、负脉冲相等是,即t=T/2,平均输出电压就为零,这时电动机就停止。 双极式
15、控制可逆PWM变换器的输出平均电压为: (15)双极式控制的桥式可逆PWM变换器有很多优点,列举如下几点:(1)电流一定是连续的;(2)当电动机停止时会有微振电流,这样能消除静摩擦死区;(3)在四个象限中电动机均可运行;(4)即使在低速的时候,每个开关器件仍有骄狂的的驱动脉冲,这样就有利于使器件可靠的导通(5)低速时平稳性好,并且系统调速范围能够达到1:20000附近;但是双极式控制方式也不是十全十美的:例如在工作中,4个开关器件很可能均处在开关的状态,这时开关损耗就会大,因此在切换的时候就或许发生上、下桥臂直通的现象,所以防止直通的方法是在上、下桥臂的驱动脉冲之间应设置逻辑延时。或者是用单极
16、式来控制,这样就使一部分器件总是处在常通或着常断的状态,从而来减少开关的次数和开关的损耗,进而提高可靠性,但是这时系统的静、动态性能可能会略有下降。 五、计算机仿真 仿真结构图 单闭环调速系统校正后启动过程中转速波形 单闭环调速系统校正后启动过程中电流波形六、设计总结参加H桥可逆直流调速系统设计和实验课程研究项目,帮助我更好地学习了专业课程电力拖动自动控制系统运动控制系统,为我提供了实践经验。在加深了对所学专业知识的了解的同时,还掌握了其它的课外知识,如SG3525、IR2110等芯片的功能,死区时间设计等等。从一开始的一无所知到现在成功地将设计展示出来,我们小组的每个成员都付出了努力,而且良
17、好的团队合作能力也是成功的关键。在此次项目中,我完成了方案一将转速环设计为典型型系统的参数设计,并且参与仿真,进行参数测试,修改设计方案。此外,撰写了研究报告的部分内容。在总体设计方案问题上,我们小组选择了与其他小组不同的方案单闭环H桥可逆直流调速系统设计。尽管在性能上与双闭环有些不同,但基本上可完成设计要求。我们利用其它时间也进行了双闭环的设计研究,并与其它小组积极讨论,理论上对两种设计思路都有了明确地了解。参数设计过程中,我先后设计了3套方案,经过仿真和不断地参数试凑,从中选择最优设计。在仿真过程中也先后遇到了很多问题,比如限幅的添加及设定,波形与理论相差甚远等等,通过学习和交流,最终对m
18、atlab仿真软件有了一定的了解,能够通过其进行辅助学习。在实体制作及性能测试过程中,我又了解了一些器件和仪器的结构及作用,如电容滤波、示波器的使用、吸收电路结构等。由于时间问题,各小组仅进行了开环实验,我学到了实验过程的先后步骤及检测方法,如通过示波器检测SG3525是否能够并且顺利发出互补脉冲,使用万用表测量滤波电容两端电压就可以知道整流电压的数值等等,顺利完成了开环实验。这是将理论联系实践的过程,更加提高了我们的动手能力和学习热情。参与此次研究项目,在提高自己理论知识的同时,提高了自己的创新能力,如参数设计时,与其它设计单环的小组采用不同的设计方法。同时提高的自己的动手能力和团队合作能力。在撰写报告时培养了自己认真严谨的态度,对以后处理问题的态度有了积极地引导作用。综上所述,此次项目的参与,让我收获很多。参考文献1陈伯时,电力拖动自动控制系统M.北京:机械工业出版社,20042唐树深,运动控制讲义J.华中科技大出版社,20043胡寿松,自动控制原理M.科学出版社,20044黄忠林,自动控制原理的MATLAB实现M.国防工业出版社,2006