第十七章《勾股定理》复习教案.doc

上传人:飞****2 文档编号:14412758 上传时间:2022-05-04 格式:DOC 页数:5 大小:119.50KB
返回 下载 相关 举报
第十七章《勾股定理》复习教案.doc_第1页
第1页 / 共5页
第十七章《勾股定理》复习教案.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《第十七章《勾股定理》复习教案.doc》由会员分享,可在线阅读,更多相关《第十七章《勾股定理》复习教案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第十七章 勾股定理教学目标:1.会用勾股定理解决简单问题。2.会用勾股定理的逆定理判定直角三角形。3.会用勾股定理解决综合问题和实际问题。教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。教学过程:一、出示目标1.会用勾股定理解决简单问题。2.会用勾股定理的逆定理判定直角三角形。3.会用勾股定理解决综合问题和实际问题。二、知识结构图定理: 直角三角形的性质:勾股定理 应用:主要用于计算勾股定理直角三角形的判别方法:若三角形的三边满足 则它是一个直角三角形.三、知识点回顾 1.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三

2、角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题(4)勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长这里一定要注意找准斜边、直角边;二要熟悉公式的变形:,勾股定理的探索与验证,一般采用“构造法”通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理2.如何判定一个三角形是直角三角形(1) 先确定最大边(如c)(2) 验证与是否具有相等关系(3) 若=,则ABC是以C为直角的直角三角形;若, 则ABC不是直角三角形。3、三角形的三边分别为a、

3、b、c,其中c为最大边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形所以使用勾股定理的逆定理时首先要确定三角形的最大边4、勾股数 满足=的三个正整数,称为勾股数如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41四、典型例题分析例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?分析: 这里知道了直角三角形的两条边的长度,应用勾股定理可求出第三条边的长度,再求周长但题中未指明已知的两条边是_还是_,因此要分两种情况讨论例2: 如图1911是

4、一只圆柱形的封闭易拉罐,它的底面半径为4cm,高为15cm,问易拉罐内可放的搅拌棒(直线型)最长可以是多长? 分析:搅拌棒在易拉罐中的位置可以有多种情形,如图中的、,但它们都不是最长的,根据实际经验,当搅拌棒的一个端点在B点,另一个端点在A点时最长,此时可以把线段AB放在RtABC中,其中BC为底面直径例3:已知单位长度为“1”,画一条线段,使它的长为分析:是无理数,用以前的方法不易准确画出表示长为的线段,但由勾股定理可知,两直角边分别为_的直角三角形的斜边长为.例4:如图,在正方形ABCD中,E是BC的中点,F为CD上一点,且求证:AEF是直角三角形分析:要证AEF是直角三角形,由勾股定理的

5、逆定理,只要证_即可例5:如图,在四边形ABCD中,C=90,AB=13,BC=4,CD=3,AD=12,求证:ADBD分析:可将直线的互相垂直问题转化成直角三角形的判定问题例6:已知:如图ABC中,AB=AC=10,BC=16,点D在BC上,DACA于A求:BD的长 分析:可设BD长为xcm,然后寻找含x的等式即可,由AB=AC=10知ABC为等腰三角形,可作高利用其“三线合一”的性质来帮助建立方程例7:一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是_(分析:可以)分析:将点A与点B展开到同一平面内,由:“两点之间,线段最短。”再根据“勾股定理”

6、求出最短路线五、补充本章注意事项勾股定理是平面几何中的重要定理,其应用极其广泛,在应用勾股定理时,要注意以下几点:1、要注意正确使用勾股定理例1 在RtABC中,B=Rt,a=1,求c。2、要注意定理存在的条件例2 在边长为整数的ABC中,ABAC,如果AC=4,BC=3,求AB的长。3、要注意原定理与逆定理的区别例3 如图1,在ABC中,AD是高,且,求证:ABC为直角三角形。4、要注意防止漏解例4 在RtABC中,a=3,b=4,求c。5、要注意正逆合用在解题中,我们常将勾股定理及其逆定理结合起来使用,一个是性质,一个是判定,真所谓珠联壁合。当然在具体运用时,到底是先用性质,还是先用判定,

7、要视具体情况而言。例5 在ABC中,D为BC边上的点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_。6、要注意创造条件应用例6 如图3,在ABC中,C=90,D是AB的中点,DEDE,DE、DF分别交AC、BC、于E、F,求证:分析 因为EF、AE、BF不是一个三解形的三边,所以要证明结论成立,必须作适当的辅助线,把结论中三条线段迁移到一个三角形中,然后再证明与EF相等的边所对的角为直角既可,为此,延长ED到G,使DG=DE,连结BG、FG,则易证明信BG=AE,GF=EF,DBG=DAE=BAC,由题设易知ABC+BAC=90,故有FBG=FBD+DBG=ABC+BAC=90,在RtFBG中,由勾股定理有:,从而。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁