《高中数学选择题解题策略(共17页).doc》由会员分享,可在线阅读,更多相关《高中数学选择题解题策略(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上选择题解题策略一、解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件。选择题不设中间分,一步失误,造成错选,全题无分。所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。迅速是赢得时间获取高分的必要条件。高考中考生不适应的试题,致使“超时失分”是造成低分的一大因素。对于选择题的解答,速度越快越好,高考要求每道选择题在13分钟内解完。一般地,解答选择题的策略是: 熟练掌握各种基本题型的一般解法。 结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技
2、巧。 挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。一、直接法直接从题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。【例1】(高考题)设f(x)是定义在(,+)的奇函数,f(x2)f(x),当0x1时,f(x)x,则f(7.5)等于_。 A. 0.5 B. 0.5 C. 1.5 D. 1.5解:由f(x2)f(x)得f(7.5)f(5.5)f(3.5)f(1.5)f(0.5),由f(x)是奇函数得f(0.5)f(0.5)0.5,所以选B。也可由f(x2)f(x),得到周期T4,所以f(7.
3、5)f(0.5)f(0.5)0.5。直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错。二、特例法用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊 角、特殊位置等。【例2】已知数列an的通项公式为an=2n-1,其前n和为Sn,那么Cn1S1+ Cn2S2+ CnnSn=(
4、)A. 2n-3n B. 3n -2n C. 5n -2n D. 3n -4n(提示:一般的解法是:先根据通项公式an=2n-1求得和的公式Sn,再代入式子Cn1S1+ Cn2S2+ CnnSn,再利用二项式展开式的逆用裂项求和得解)其实这既然是小题,就应该按照解小题的思路来求做:解:令n=2,代入式子,再对照选项,选B当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得愈简单愈好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30左右。三、筛选法从题设条件出发,运用定理、性质
5、、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确判断的方法叫筛选法或剔除法。【例3】(高考题)已知ylog(2ax)在0,1上是x的减函数,则a的取值范围是_。 A. 0,1 B. (1,2 C. (0,2) D. 2,+) 解: 2ax是在0,1上是减函数,所以a1,排除答案A、C;若a2,由2ax0得xcosx,则x的取值范围是( ) (A)x|2kx2k,kZ (B) x|2kx2k,kZ (C) x|kxk,kZ (D) x|kxk,kZ 解:(直接法)由sinxcosx得cosxsinx0,即cos2x0,所以:k2xk,选D. 另解:数形结合法:由已知得|sinx|c
6、osx|,画出y=|sinx|和y=|cosx|的图象,从图象中可知选D. 例2设f(x)是(,)是的奇函数,f(x2)f(x),当0x1时,f(x)x,则f(7.5)等于( ) (A) 0.5 (B) 0.5 (C) 1.5 (D) 1.5 解:由f(x2)f(x)得f(7.5)f(5.5)f(3.5)f(1.5)f(0.5),由f(x)是奇函数,得 f(0.5)f(0.5)0.5,所以选B. 也可由f(x2)f(x),得到周期T4,所以f(7.5)f(0.5)f(0.5)0.5. 例3七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A) 1440 (B) 360
7、0 (C) 4320 (D) 4800 解一:(用排除法)七人并排站成一行,总的排法有种,其中甲、乙两人相邻的排法有2种.因此,甲、乙两人必需不相邻的排法种数有:23600,对照后应选B; 解二:(用插空法)3600. 直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的个性,用简便方法巧解选择题,是建在扎实掌握三基的基础上,否则一味求快则会快中出错. 2、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数
8、值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 例4已知长方形的四个项点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射解等于反射角),设P4坐标为(的取值范围是( ) (A) (B) (C) (D) 解:考虑由P0射到BC的中点上,这样依次反射最终回到P0,此时容易求出tan=,由题设条件知,1x42,则tan,排除A、B、D,故选C. 另解:(直接法)注意入射角等于反射角,.,所以选C. 例5如果n是正偶数,则CC.CC( ) (A) 2 (B) 2 (C)
9、 2 (D) (n1)2 解:(特值法)当n2时,代入得CC2,排除答案A、C;当n4时,代入得CCC8,排除答案D.所以选B. 另解:(直接法)由二项展开式系数的性质有CC.CC2,选B. 例6等差数列an的前m项和为30,前2m项和为100,则它的前3m项和为( ) (A)130 (B)170 (C)210 (D)260 解:(特例法)取m1,依题意30,100,则70,又an是等差数列,进而a3110,故S3210,选(C). 例7若,P=,Q=,R=,则( ) (A)RPQ (B)PQ R (C)Q PR (D)P RQ 解:取a100,b10,此时P,Qlg,Rlg55lg,比较可知
10、选PQR 当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30左右. 3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据四选一的指令,逐步剔除干扰项,从而得出正确的判断. 例8已知ylog(2ax)在0,1上是x的减函数,则a的取值范围是( ) (A)(0,1) (B)(1,2) (C)(0,2) (D) 2,+ 解: 2ax是在0,1上是减函数,所以a1,排除答案A、C;若a2,由2ax0得x1,这与x0,
11、1不符合,排除答案D.所以选B. 例9过抛物线y4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是( ) (A) y2x1 (B) y2x2 (C) y2x1 (D) y2x2 解:(筛选法)由已知可知轨迹曲线的顶点为(1,0),开口向右,由此排除答案A、C、D,所以选B; 另解:(直接法)设过焦点的直线yk(x1),则,消y得: kx2(k2)xk0,中点坐标有,消k得y2x2,选B. 筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,
12、直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40. 4、代入法: 将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案. 例10函数y=sin(2x)sin2x的最小正周期是( ) (A) (B) (C) 2 (D) 4 解:(代入法)f(x)sin2(x)sin2(x)f(x), 而f(x)sin2(x)sin2(x)f(x).所以应选B; 另解:(直接法)ycos2xsin2xsin2xsin(2x),T,选B. 例11函数ysin(2x)的图象的一条对称轴的方程是(
13、) (A)x (B)x (C)x (D)x 解:(代入法)把选择支逐次代入,当x时,y1,可见x是对称轴,又因为统一前提规定只有一项是符合要求的,故选A. 另解:(直接法) 函数ysin(2x)的图象的对称轴方程为2xk,即x, 当k1时,x,选A. 代入法适应于题设复杂,结论简单的选择题。若能据题意确定代入顺序,则能较大提高解题速度。 5、图解法: 据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法. 例12在内,使成立的的取值范围是( ) (A) (B)(C) (D) 解:(图解法)在同一直角坐标系中分别作出ysinx与ycosx的图象,便可
14、观察选C. 另解:(直接法)由得sin(x)0,即2 kx2k,取k0即知选C. 例13在圆xy4上与直线4x3y12=0距离最小的点的坐标是( ) (A)(,) (B)(,) (C)(,) (D)(,) 解:(图解法)在同一直角坐标系中作出圆xy4和直线4x3y12=0后,由图可知距离最小的点在第一象限内,所以选A. 直接法:先求得过原点的垂线,再与已知直线相交而得. 例14设函数 ,若,则的取值范围是( ) (A)(,1) (B)(,) (C)(,)(0,) (D)(,)(1,) 解:(图解法)在同一直角坐标系中,作出函数 的图象和直线,它们相交于(1,1) 和(1,1)两点,由,得或.
15、严格地说,图解法并非属于选择题解题思路范畴, 而是一种数形结合的解题策略.但它在解有关选择题时 非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.如: 例15函数y=|x2-1|+1的图象与函数y=2 x的图象交点的个数为( ) (A)1 (B)2 (C)3 (D)4 本题如果图象画得不准确,很容易误选(B);答案为(C)。 数形结合,借助几何图形的直观性,迅速作正确的判断是高考考查的重点之一;历年高考选择题直接与图形有关或可以用数形结合思想求解的题目约占50左右. 6、割补法 能割善补是解决几何问题常用的方法,巧妙地利用割补法
16、,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度. 例16一个四面体的所有棱长都为,四个项点在同一球面上,则此球的表面积为( )(A)3 (B)4 (C)3 (D)6 解:如图,将正四面体ABCD补形成正方体,则正四面体、正方体的中心与其外接球的球心共一点.因为正四面体棱长为,所以正方体棱长为1,从而外接球半径R.故S球3. 直接法(略) 我们在初中学习平面几何时,经常用到割补法,在立体几何推导锥体的体积公式时又一次用到了割补法,这些蕴涵在课本上的方法当然是各类考试的重点内容.因此,当我们遇到不规则的几何图形或几何体时,自然要想到割补法. 7、极限法: 从有限到无
17、限,从近似到精确,从量变到质变.应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程. 例17对任意(0,)都有( ) (A)sin(sin)coscos(cos) (B) sin(sin)coscos(cos) (C)sin(cos)cos(sin)cos (D) sin(cos)coscos(sin) 解:当0时,sin(sin)0,cos1,cos(cos)cos1,故排除A,B. 当时,cos(sin)cos1,cos0,故排除C,因此选D. 例18不等式组的解集是( ) (A)(0,2) (B)(0,2.5) (C)(0,) (D)(0,3) 解:不等式的极
18、限即方程,则只需验证x=2,2.5,和3哪个为方程的根,逐一代入,选C. 例19在正n棱锥中,相邻两侧面所成的二面角的取值范围是( ) (A)(,) (B)(,) (C)(0,) (D)(,) 解:当正n棱锥的顶点无限趋近于底面正多边形中心时,则底面正多边形便为极限状态,此时棱锥相邻两侧面所成二面角,且小于;当棱锥高无限大时,正n棱柱便又是另一极限状态,此时,且大于,故选(A). 用极限法是解选择题的一种有效方法.它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到答案。 8、估值法 由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可
19、以减少运算量,当然自然加强了思维的层次. 例20如图,在多面体ABCDEF中,已知面ABCD是边长为 3的正方形,EFAB,EF,EF与面AC的距离为2,则该多面 体的体积为( )(A) (B)5 (C)6 (D) 解:由已知条件可知,EF平面ABCD,则F到平面ABCD的距离为2, VFABCD3226,而该多面体的体积必大于6,故选(D). 例21已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且 AB=BC=CA=2,则球面面积是( )(A) (B) (C)4 (D) 解球的半径R不小于ABC的外接圆半径r,则S球4R24r25,故选(D). 估算,省去了很多推导过程和比较
20、复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法. 三、总结提炼 从考试的角度来看,解选择题只要选对就行,至于用什么策略,手段都是无关紧要的.所以人称可以不择手段.但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速. 总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的个性,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正
21、确的选择.这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间.三、选择题在数学试卷上是60分,占了相当大的比重。那么如何迅速准确地抓住选择题的60分,将影响到我们整个试卷的答题质量。该如何快速准确的去做选择题,这就要从选择题本身的特点上来看。选择题答案 是四选一,只有一个正确答案,所以除了按部就班的解题方法外,还需要注意一些解题策略。 首先,要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题
22、目的真正含义。 其次,要注意解题方法。做题时除了按照解答题的思路直接来求以外,还要注意一些特殊的方法,比如说特殊值法,代入法,排除法,验证法,数形结合法等等。 直接法有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由概念、公式、定理及性质出发,按照做解答题的方法一步步来求。我们在做解答题时大部分都是采用这种方法。 排除法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。 验证法通过对选择支的观察,分析,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、
23、或采取其他验证手段,以判断选择支正误的方法。 特殊值法有些选择题用常规方法求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。 数形结合法也叫图象法,有些选择题用代数方法解计算较繁,但若能根据题意,做出草图,然后根据图形的形状、位置、性质、综合特征等,由图形的直观性得出选择题的答案。 选择题的解题方法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种特殊方法综合运用。 还有,在做选择题的过程中,遇到关键性的词语可用笔做个记号,以引起自己的注意,比如说至少,没有一个,至多一个等等。第一遍没做的题也要做个记号,但要注意与其它记号区分开来,这样不容易遗漏。 最后,做完题后要仔细检查,有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。专心-专注-专业