相关分析和一元线性回归分析SPSS报告(共14页).doc

上传人:飞****2 文档编号:14373543 上传时间:2022-05-04 格式:DOC 页数:14 大小:582.50KB
返回 下载 相关 举报
相关分析和一元线性回归分析SPSS报告(共14页).doc_第1页
第1页 / 共14页
相关分析和一元线性回归分析SPSS报告(共14页).doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《相关分析和一元线性回归分析SPSS报告(共14页).doc》由会员分享,可在线阅读,更多相关《相关分析和一元线性回归分析SPSS报告(共14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上用下面的数据做相关分析和一元线性回归分析:选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。一、相关分析1. 作散点图普通高等学校毕业生数和高等学校发表科技论文数量的相关图从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。2. 求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果: Correlations 普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)普通高等学校毕业生数(万人)Pe

2、arson Correlation1.998*Sig. (2-tailed).000N1414高等学校发表科技论文数量(篇)Pearson Correlation.998*1Sig. (2-tailed).000N1414*. Correlation is significant at the 0.01 level (2-tailed).两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。3. 求两变量之间的相关性选择相关系数中的

3、全部,点击确定:Correlations(万人)(篇)Kendalls tau_b(万人)Correlation Coefficient1.0001.000*Sig. (2-tailed).N1414(篇)Correlation Coefficient1.000*1.000Sig. (2-tailed).N1414Spearmans rho(万人)Correlation Coefficient1.0001.000*Sig. (2-tailed).N1414(篇)Correlation Coefficient1.000*1.000Sig. (2-tailed).N1414*. Correlati

4、on is significant at the 0.01 level (2-tailed).注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000, 呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。 两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000, 呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。4. 普通高等学校毕业生数和高等学校发表科技论文数量的相关系数将所求变量移至变量,将控制变量移至控制中,选中

5、显示实际显著性水平,点击确定:Correlations普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)普通高等学校毕业生数(万人)Pearson Correlation1.998*Sig. (2-tailed).000N1414高等学校发表科技论文数量(篇)Pearson Correlation.998*1Sig. (2-tailed).000N1414*. Correlation is significant at the 0.01 level (2-tailed).注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p值0

6、,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。二、一元线性回归从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。1. 建立回归方程点击选项,选中使用F的概率,如上图所示。点击继续,确定:Variables Entered/RemovedbModelVariables EnteredVariables RemovedMethod1(篇)a.Entera. All requested variables entered.b. Dependent Vari

7、able: (万人)此图显示的是回归分析方法引入变量的方式。Model SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.998a.996.99611.707a. Predictors: (Constant), (篇)此图是回归方程的拟合优度检验。注解:上图是回归方程的拟合优度检验。 第二列:两变量(被解释变量和解释变量)的相关系数R=0.998. 第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数=0.996是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合

8、优度越高,被解释变量可以被模型解释的部分越多。 第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数=0.996。这主要适用于多个解释变量的时候。第五列:回归方程的估计标准误差=11.707.ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression.6641.6643271.335.000aResidual1644.53512137.045Total.19913a. Predictors: (Constant), (篇)b. Dependent Variable: (万人)注解:回归方程的整体显著性检验回归分析的方差分析第

9、二列:被解释变量(毕业人数)的总离差平方和=.199,被分解为两部分:回归平方和=.664;剩余平方和=1644.535.F检验统计量的值=3271.335,对应概率的P值=0.000,小于显著性水平0.05,应拒绝回归方程显著性检验的原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的,可以建立线性模型。CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.BStd. ErrorBeta1(Constant)-316.2

10、5914.029-22.543.000(篇).001.000.99857.196.000a. Dependent Variable: (万人)注解:回归方程的回归系数和常数项的估计值,以及回归系数的显著性检验。第二列:常数项估计值=-316.259;回归系数估计值=0.001.第三列:回归系数的标准误差=0.000第四列:标准化回归系数=0.998.第五、六列:回归系数T检验的t统计量值=57.196,对应的概率P值=0.000,小于显著性水平0.05,拒绝原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的。于是,

11、回归方程为:=-316.259+0.001x2. 回归方程的进一步分析(1)在统计量中选中误差条图的表征,水平百分之95.点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵和单侧检验概率值: Descriptive StatisticsMeanStd. DeviationN(万人)465.92186.04414(篇).57.01914Correlations(万人)(篇)Pearson Correlation(万人)1.000.998(篇).9981.000Sig. (1-tailed)(万人).000

12、(篇).000.N(万人)1414(篇)1414(2)残差分析选中统计量中的个案诊断,所有个案,点击继续,然后确定:Residuals StatisticsaMinimumMaximumMeanStd. DeviationNPredicted Value137.72707.16465.92185.70414Std. Predicted Value-1.7671.299.0001.00014Standard Error of Predicted Value3.1536.5364.320.99514Adjusted Predicted Value139.53713.78466.40185.6201

13、4Residual-26.27619.112.00011.24714Std. Residual-2.2451.633.000.96114Stud. Residual-2.5111.696-.0181.04814Deleted Residual-32.89620.618-.47313.40314Stud. Deleted Residual-3.4911.862-.0731.25914Mahal. Distance.0153.123.929.89014Cooks Distance.000.795.100.20514Centered Leverage Value.001.240.071.06814a

14、. Dependent Variable: (万人)Casewise DiagnosticsaCase NumberStd. Residual(万人)Predicted ValueResidual1-2.245681707.16-26.2762.811659649.879.4943.834639628.969.7594.314625621.023.6785-.542608614.50-6.3416.061575574.71.7117-.418531536.00-4.89681.633512492.8419.1129.370448443.454.33610-.259378380.53-3.032111.070307294.2712.52712-.447239244.33-5.22813-.842188197.55-9.85214-.341134137.72-3.993a. Dependent Variable: (万人)从上表可以看出,第8例的残差和标准化残差最大。您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。阅读过后,希望您提出保贵的意见或建议。阅读和学习是一种非常好的习惯,坚持下去,让我们共同进步。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁