《高中物理复习专题之绳子、弹簧和杆产生的弹力特点、绳拉物问题牛顿第二定律分析、整体法与隔离法(共21页).doc》由会员分享,可在线阅读,更多相关《高中物理复习专题之绳子、弹簧和杆产生的弹力特点、绳拉物问题牛顿第二定律分析、整体法与隔离法(共21页).doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上绳拉物问题【问题综述】 此类问题的关键是: 1.准确判断谁是合运动,谁是分运动;实际运动是合运动 2.根据运动效果寻找分运动; 3.一般情况下,分运动表现在: 沿绳方向的伸长或收缩运动; 垂直于绳方向的旋转运动。 4.根据运动效果认真做好运动矢量图,是解题的关键。 5.对多个用绳连接的物体系统,要牢记在绳的方向上各点的速度大小相等。 6.此类问题还经常用到微元法求解。1 汽车通过绳子拉小船,则( )A、汽车匀速则小船一定匀速B、汽车匀速则小船一定加速C、汽车减速则小船一定匀速D、小船匀速则汽车一定减速v1v2vv1v2vv1v2v甲丙乙分析:(1)如图甲,被分解的速度
2、应是实际的速度,即小船上系绳那一点的水平速度,而不应是沿绳子方向的分运动的运动,故甲图是错误的(2)如乙图,v2还有沿绳方向的速度分量,还需再将v2分解,才能符合实际效果。但此法麻烦复杂。(2)如丙图,将船在水平方向的运动分解为两个分运动,一个分运动沿绳方向,根据运动的合成与分解的独立性原理,当这个分运动消失,表现为另一个分运动,可见是以滑轮为圆心的圆周运动,故另一个分运动方向与绳方向垂直。由图可知v1=vcos,v1不变,当增大时,v增大,故B正确;v不变,当增大时,v1减小,故D正确;注意它的逆推断不一定,故C错G2:如图,汽车拉着重物G,则( AcD )A、汽车向左匀速,重物向上加速B、
3、汽车向左匀速,重物所受绳拉力小于重物重力C、汽车向左匀速,重物所受绳拉力大于于重物重力D、汽车向右匀速,重物向下减速3:如左图,若已知物体A的速度大小为vA,求重物B的速度大小vB?vA/cos4:如右图,若角大于角,则汽车A的速度 大于 汽车B的速度vBvAABAB5 如图所示,A、B两物体用细绳相连,在水平面上运动,当=45度,=30度时,物体A的速度为2 m/s,这时B的速度为 。AB6质量分别为m和M的两个物体跨过定滑轮如图所示,在M沿光滑水平面运动的过程中,两物体速度的大小关系为( A )AV1V2BV1V2CV1=V27如图所示,汽车以v05.0m/s的速度在水平路面上开动,通过绳
4、子牵引重物P。若汽车从A点开到B点,AB20m。求:(1)此过程中重物P的平均加速度;(2)若H4m,物体P的平均速度。(1)A点沿绳子的速度:V0*cos60=2.5 m/sB点沿绳子的速度:V0*cos30=2.53 m/s所用时间从汽车上算 汽车是匀直运动 t=20/5=4sa=(2.53-2.5 )/4 m/s2 我不化成小数了(2)H=4m绳子走的距离:长绳子减短绳子S=8-(8/3)*3平均速度:T=S/t=8-(8/3)*3/4 结果我不化了解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。下面主要就这类
5、问题的主要情形及同学们易出错的地方加以分析剖析。一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。【例1】如右图所示,、两物体通过一条跨过定滑轮的绳子相连接。沿斜面下滑,沿水平面滑动。由于、的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。因而、两物体的速度大小相等。当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。【例2】如右图所示,人用绳子通过定滑轮拉物体,当人以速度匀速
6、前进时,求物体的速度。首先要分析物体的运动与人拉绳的运动之间有什么关系。物体的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。这样就可以求得物体的速度。当物体向左移动,将逐渐变大,逐渐变大。虽然人做匀速运动,但物体却在做变速运动。【例3】光滑水平面上有、两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为和。当水平力拉着且绳子与水平方向的夹角为,时,、两物体的速度之比是多少?【解析】在本题中,由于、的速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。设沿绳
7、子方向的分速度大小为,则由速度的合成与分解可得:,可得:。二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。【例4】如右图所示,有一质量为的小球与穿过光滑水平板中央小孔的轻绳相连,用力拉着绳子另一端使在水平板内绕做半径为、角速度为的匀速圆周运动。求:(1)此时的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使绕做半径为的匀速圆周运动,从放松到拉直这段过程经过了多长时间?(3)做半径为的圆周运动的角速
8、度?【解析】(1)根据线速度与角速度的关系可知:(2)如右图,绳子放松后,小球保持的速度沿切线做匀速直线运动,从放开到拉紧这段位移为。又因为则可得:。(3)在拉直过程中,的速度可分解为沿绳子方向和垂直于绳子方向的两个分速度。当绳子突然拉直时,由于绳子弹力的作用,使沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变,所以小球将以速度做半径为的匀速圆周运动。所以有:,其中,。则可解得:【点评】本题的第(3)问是同学经常出错的地方,错误的原因就在于,没有注意到小球的速度在绳子拉直的瞬间会发生突变,而错误地认为小球的速率仍然为。解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的
9、一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。【例1】如右图所示,、两物体通过一条跨过定滑轮的绳子相连接。沿斜面下滑,沿水平面滑动。由于、的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。因而、两物体的速度大小相等。当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和
10、分解的知识解答。【例2】如右图所示,人用绳子通过定滑轮拉物体,当人以速度匀速前进时,求物体的速度。首先要分析物体的运动与人拉绳的运动之间有什么关系。物体的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。这样就可以求得物体的速度。当物体向左移动,将逐渐变大,逐渐变大。虽然人做匀速运动,但物体却在做变速运动。【例3】光滑水平面上有、两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为和。当水平力拉着且绳子与水平方向的夹角为,时,、两物体的速度之比是多少?【解析】在本题中,由于、的
11、速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。设沿绳子方向的分速度大小为,则由速度的合成与分解可得:,可得:。二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。【例4】如右图所示,有一质量为的小球与穿过光滑水平板中央小孔的轻绳相连,用力拉着绳子另一端使在水平板内绕做半径为、角速度为的匀速圆周运动。求:(1)此时的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使绕做半径为的匀速
12、圆周运动,从放松到拉直这段过程经过了多长时间?(3)做半径为的圆周运动的角速度?【解析】(1)根据线速度与角速度的关系可知:(2)如右图,绳子放松后,小球保持的速度沿切线做匀速直线运动,从放开到拉紧这段位移为。又因为则可得:。(3)在拉直过程中,的速度可分解为沿绳子方向和垂直于绳子方向的两个分速度。当绳子突然拉直时,由于绳子弹力的作用,使沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变,所以小球将以速度做半径为的匀速圆周运动。所以有:,其中,。则可解得:【点评】本题的第(3)问是同学经常出错的地方,错误的原因就在于,没有注意到小球的速度在绳子拉直的瞬间会发生突变,而错误地认为小球的
13、速率仍然为。解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。【例1】如右图所示,、两物体通过一条跨过定滑轮的绳子相连接。沿斜面下滑,沿水平面滑动。由于、的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。因而、两物体的速度大小相等。当物体的运动方向不沿绳子方向
14、(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。【例2】如右图所示,人用绳子通过定滑轮拉物体,当人以速度匀速前进时,求物体的速度。首先要分析物体的运动与人拉绳的运动之间有什么关系。物体的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。这样就可以求得物体的速度。当物体向左移动,将逐渐变大,逐渐变大。虽然人做匀速运动,但物体却在做变速运动。【例3】光滑水平面上有、两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为和。当水平力拉着且绳子
15、与水平方向的夹角为,时,、两物体的速度之比是多少?【解析】在本题中,由于、的速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。设沿绳子方向的分速度大小为,则由速度的合成与分解可得:,可得:。二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。【例4】如右图所示,有一质量为的小球与穿过光滑水平板中央小孔的轻绳相连,用力拉着绳子另一端使在水平板内绕做半径为、角速度为的匀速圆周运动。求:(1)
16、此时的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使绕做半径为的匀速圆周运动,从放松到拉直这段过程经过了多长时间?(3)做半径为的圆周运动的角速度?【解析】(1)根据线速度与角速度的关系可知:(2)如右图,绳子放松后,小球保持的速度沿切线做匀速直线运动,从放开到拉紧这段位移为。又因为则可得:。(3)在拉直过程中,的速度可分解为沿绳子方向和垂直于绳子方向的两个分速度。当绳子突然拉直时,由于绳子弹力的作用,使沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变,所以小球将以速度做半径为的匀速圆周运动。所以有:,其中,。则可解得:【点评】本题的第(3)问是同学经常出错的地方,错误的原
17、因就在于,没有注意到小球的速度在绳子拉直的瞬间会发生突变,而错误地认为小球的速率仍然为。一、滑块问题1如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。小滑块与木板之间的动摩擦因数为(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M上,最终使得m能从M上面滑落下来。问:m在M上面滑动的时间是多大? 解析:(1)小滑块与木板间的滑动摩擦力 小滑块在滑动摩擦力f作用下向右匀加速运动的加速度 木板在拉力F和
18、滑动摩擦力f作用下向右匀加速运动的加速度 使m能从M上面滑落下来的条件是 即 (2)设m在M上滑动的时间为t,当恒力F=22.8N,木板的加速度 ) 小滑块在时间t内运动位移 木板在时间t内运动位移 因 即 AvB2长为1.5m的长木板B静止放在水平冰面上,小物块A以某一初速度从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为0.4m/s,然后A、B又一起在水平冰面上滑行了8.0cm后停下若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数1=0.25求:(取g=10m/s2)(1)木块与冰面的动摩擦因数(2)小物块相对于长木板滑行的距离(3)为了保证小物块
19、不从木板的右端滑落,小物块滑上长木板的初速度应为多大?解析:(1)A、B一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度 解得木板与冰面的动摩擦因数2=0.10(2)小物块A在长木板上受木板对它的滑动摩擦力,做匀减速运动,加速度a1=1g=2.5m/s2小物块A在木板上滑动,木块B受小物块A的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有1mg2(2m)g=ma2 解得加速度a2=0.50m/s2设小物块滑上木板时的初速度为v10,经时间t后A、B的速度相同为v由长木板的运动得v=a2t,解得滑行时间小物块滑上木板的初速度 v10=va1t=2.4m/s小物块A在长木板B上滑动的距离为
20、(3)小物块A滑上长木板的初速度越大,它在长木板B上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A达到木板B的最右端,两者的速度相等(设为v),这种情况下A的初速度为保证不从木板上滑落的最大初速度,设为v0有由以上三式解得,为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度不大于最大初速度动力学中的传送带问题一、传送带模型中要注意摩擦力的突变滑动摩擦力消失 滑动摩擦力突变为静摩擦力 滑动摩擦力改变方向二、传送带模型的一般解法确定研究对象;分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;分清楚研究过程,利用牛顿运动定律和运动学规律求解未知
21、量。难点疑点:传送带与物体运动的牵制。牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。分析问题的思路:初始条件相对运动判断滑动摩擦力的大小和方向分析出物体受的合外力和加速度大小和方向由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。一、水平放置运行的传送带 1如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则( )ABCD2如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送
22、带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2,则下列说法正确的是:( )A只有v1= v2时,才有v2= v1 B 若v1 v2时, 则v2= v2C若v1 30rad/s时,水平位移不变,说明物体在AB之间一直加速,其末速度.根据当010rad/s时,当30rad/s时,解得:6【答案】解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a小于传送带的加速度a0根据牛顿第二定律,可得ag设经历时间t,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v,有v0a0t,vat由于aa0,故vv0,煤块
23、继续受到滑动摩擦力的作用再经过时间t,煤块的速度由v增加到v0,有v0v+at此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹设在煤块的速度从0增加到v0的整个过程中,传送带和煤块移动的距离分别为s0和s,有,传送带上留下的黑色痕迹的长度ls0s由以上各式得二、倾斜放置运行的传送带1【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsin与所受的最大静摩擦力,若tan,则继续向下加速若tan,则将随传送带一起匀速运动,分析
24、清楚了受力情况与运动情况,再利用相应规律求解即可本题中最大静摩擦力等于滑动摩擦力大小物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F,物体受力情况如图所示物体由静止加速,由牛顿第二定律得a1=10(0.60.50.8)m/s2=10m/s2物体加速至与传送带速度相等需要的时间,t1时间内位移由于tan,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F此时物体受力情况如图所示,由牛顿第二定律得:设后一阶段物体滑至底端所用的时间为t2,由 ,解得t2=1s,t2=11s(舍去)所以物体由AB
25、的时间t=t1t2=2s2解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动由牛顿第二定律得mgcos37mgsin37ma则agcos37gsin370.4 m/s2物体加速至2 m/s所需位移s0 m5 mL经分析可知物体先加速5 m再匀速运动sLs06 m.匀加速运动时间t1 s5 s.匀速运动的时间t2 s3 s.则总时间tt1t2(53) s8 s.答案:8 s三、组合类的传送带1【答案】2.4s解析:物体P随传送带做匀加速直线运动,当速度与传送带相等时若未到达B,即做一段匀速运动;P从B至C段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间P在AB段先做
26、匀加速运动,由牛顿第二定律,得P匀加速运动的时间,匀速运动时间P以速率v开始沿BC下滑,此过程重力的下滑分量mgsin37=0.6mg;滑动摩擦力沿斜面向上,其大小为mgcos37=0.2mg可见其加速下滑由牛顿第二定律,解得t3=1s(另解,舍去)从A至C经过时间t=t1t2t3=2.4s2解:物体A轻放在a点后在摩擦力和重力作用下先做匀速直线运动直到和传送带速度相等,然后和传送带一起匀速运动到b点。在这一加速过程中有加速度运动时间运动距离在ab部分匀速运动过程中运动时间所以物体A从a处被传送到b和所用的时间3(14分)解:(1)米袋在AB上加速时的加速度(2分)米袋的速度达到=5ms时,滑
27、行的距离,因此米加速一段后与传送带一起匀速运动到达B点,到达C点时速度v0=5ms(1分) 设米袋在CD上运动的加速度大小为a,由牛顿第二定律得 代人数据得a=10ms2.(2分) 所以,它能上滑的最大距离.(1分) (2顺斜部分传送带沿顺时针方向转动时,米袋速度减为4ms之前的加速度为 .(1分) 速度减为4m / s时上滑位移为.(1分) 米袋速度等于4ms时,滑动摩擦力方向改变,由于,故米继续向上减速运动(1分) 米袋速度小于4ms减为零前的加速度为- .(2分) 速度减到0时上滑位移为(1分) 可见,米袋速度减速到0时,恰好运行到D点。 米袋从C运动到D所用的时间.2分第六课时 隔离法
28、和整体法 决定物体在斜面上运动状态的因素概念规律:1隔离法和整体法(1)隔离法 将研究系统内某个物体或物体的一部分从系统中隔离出来进行研究的方法(2)整体法 将系统内多个物体看做一个对象进行研究的方法2决定物体在斜面上运动状态的因素:若物体以初速V。沿倾角为的斜面向下运动,则:当=tan时,匀速;tan时,加速;当tan时,减速。与m无关(由重力沿斜面向下的分量mgsin跟摩擦力 mgcos大小的关系决定)。方法技巧:1要求某个力时,必须从该力作用点处将相互作用的物体隔离开,研究相互作用的一个物体,使该力成为外力2若求由多个物体组成的系统跟外部的作用力,一般用整体法,选择隔离法和整体法的顺序应
29、该是“先整体后隔离”,用整体法不能解决问题时才考虑隔离法。例题:图1-39【例1】如图1-39所示,斜面上放一物体A恰能在斜面上保持静止,如果在物体A的水平表面上再放一重物,下面说法中正确的是( ) A物体A将开始加速下滑 B物体A仍保持静止C物体A所受的摩擦力增大 D物体A所受的合力增大 图1-40【例2】如图1-40所示,甲、乙两球带电量均为q,质量均为m,两球间用绝缘细线连接,甲球又用绝缘细线悬挂在天花板上,在两球所在的空间有方向水平向左的匀强电场,场强为E,平衡时细线被拉紧,则表示平衡状态的图可能正确的是下列哪一个?( )平衡后的拉力正确的是( ) A B C DAT=2mgT= BT
30、2mg TCT2mg T D/T=2mg T 图141【例3】如图1-41所示,人重G,板重G,各滑轮摩擦、质量不计,为使系统平衡,人必须用多大的力拉绳?、G、 G之间应满足什么关系?图1-42【例4】如图1-42所示,重为G的均匀链条,两端用等长的轻绳连接挂在等高的地方,绳与水平方向成角,试求:(1)绳子的张力大小。(2)链条最低点的张力大小.析与解: (1)绳子的张力等于整条链跟外部绳子的作用力,此处应以整条链为研究对象,作其受力图如右上图,由对称性知:F=F,因竖直方向合力为零,则有:2Fsin=G , F=G/2sin,即绳子的拉力为G/2sin。 (2)将链条从最底点隔离开,只研究右
31、半条链条,作其受力图如上页右下图,由图得F=Gctg/2即链条最低点的张力为Gctg/2 。 图1-43练习题:1如图143所示,两只相同的均匀光滑小球,置于半径为R的圆柱形容器中,且小球的半径r满足2rR,则以下关于A、B、C、D四点的弹力大小的说法中正确的是( ) A D点的弹力可以大于、等于或小于小球的重力 B D点的弹力等于A点的弹力(大小) C B点的弹力恒等于一个小球重力的2倍D C点弹力可以大于、等于或小于小球的重力 2如图1-44,A、B是质量均为M的两条磁体,C 为木块,水平放置静止时,B对A的弹力为F,C对B的弹力为F则( ) A F=MgF=2Mg B FMg F=2Mg
32、CFMg F=Mg DFMgF2Mg3如图145,在两块相同的竖直木板之间有质量均为M的4块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则2、3两块砖之间的摩擦力大小为_.如为5块砖呢?VmM图1-464如图1-46所示,放置在水平面上的直角劈M上有一质量为m的物体,若m在其上匀速下滑,M仍保持静止,则正确的是:( ) AM对地面的压力等于(m+M)g BM对地面的压力大于(m+M)gC地面对M没有摩擦力 D地面对M有向左的摩擦力5如图1-47所示,要使静止在粗糙斜面上的物体A下滑,可采用下列哪种办法?( ) A对物体加一竖直向下的力 B减少物体的质量C增大斜面的倾角 D在物体A的
33、后面放一个与A完全相同的物体 6如图1-48所示,半径为R的光滑球重为G,光滑木块厚为h,重为G,用至少多大的水平力F推木块才能使球离开地面? 图1-49OPQBA7(1998年上海)有一个直角支架AOB,AO水平放置,表面粗糙,AO上套有小环P,OB上套有小环Q且光滑,两环质量均为m,两环间用质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图149,现将P环向左移动一小段距离,两环再次达到平衡,则移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和细绳的拉力FT的变化情况是( )A、FN不变,FT变大 B、FN不变,FT变小C、FN变大,FT变大 D、FN变大,FT变小参考答
34、案:例题:1、分析重物与A组成的整体,与原A物比较,就是质量增大了一些,跟未变,所以整体也是恰好不下滑。.选B、C2、分析线1的张力方向与大小时,应以两球及中间线整体为对象,因整体在水平方向所受电场力的合力为零,故线1必须竖直,选A;因整体竖直方向受力平衡,得:T=2mg,为了得出T,必须使其成为外力,将乙球隔离出来作其受力图,由力的平衡有: T+F=.即 T,选D。.3、以人和板整体为研究对象,设人的拉力为F,则由力的平衡有:F+F+2F+4F= G +G 得:F=( G +G)/8由于人拉绳子的力应小于或等于人的重力,即有:F=( G +G)/8G 得:GG/7,所以人必须用( G +G)/8的力拉绳,G 、G之间应满足的关系为GG/7 练习:1、ABC 2、B 3、0 4、AC 5、C 6、:考虑“至少”对应的临界