矩阵范数的意义(共2页).docx

上传人:飞****2 文档编号:14315297 上传时间:2022-05-03 格式:DOCX 页数:2 大小:25.19KB
返回 下载 相关 举报
矩阵范数的意义(共2页).docx_第1页
第1页 / 共2页
矩阵范数的意义(共2页).docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《矩阵范数的意义(共2页).docx》由会员分享,可在线阅读,更多相关《矩阵范数的意义(共2页).docx(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上矩阵范数的意义几何方法是一种数学思维方法。函数和几何是数学的两条主要主线。我们学习各种函数及其性质,比如微积分、复变函数、实变函数、泛函等。而几何是函数形象表达,函数是几何的抽象描述,几何研究“形”,函数研究“数”,它们交织在一起推动数学向更深更抽象的方向发展。函数图象联系了函数和几何,表达两个数之间的变化关系,映射推广了函数的概念,使得自变量不再仅仅局限于一个数,也不再局限于一维,任何事物都可以拿来作映射,维数可以是任意维,传统的函数图象已无法直观地表达高维对象之间的映射关系,这就要求我们在观念中,把三维的几何空间推广到抽象的n维空间。由于映射的对象可以是任何事物,

2、为了便于研究映射的性质以及数学表达,我们首先需要对映射的对象进行“量化”,取定一组“基”,确定事物在这组基下的坐标,事物同构于我们所熟悉的抽象几何空间中的点,事物的映射可以理解为从一个空间中的点到另一个空间的点的映射,而映射本身也是事物,自然也可以抽象为映射空间中的一个点,这就是泛函中需要研究的对象函数。从一个线性空间到另一个线性空间的线性映射,可以用一个矩阵来表达,矩阵被看线性作映射,线性映射的性质可以通过研究矩阵的性质来获得,比如矩阵的秩反映了线性映射值域空间的维数,可逆矩阵反映了线性映射的可逆,而矩阵范数反映了线性映射把一个向量映射为另一个向量,向量的“长度”缩放的比例。并不是只有线性空

3、间才有范数的定义,任意空间都可以引入范数,这样的空间称为赋范空间,使得这个空间可以被度量,如希尔伯特空间。范数是把一个事物映射到非负实数,且满足非负性、齐次性、三角不等式,符合以上定义的都可以称之为范数,所以,范数的具体形式有很多种(由内积定义可以导出范数,范数还也可以有其他定义,或其他方式导出),要理解矩阵的算子范数,首先要理解向量范数的内涵。矩阵的算子范数,是由向量范数导出的,由形式可以知:或方阵由矩阵算子范数的定义形式可知,矩阵A把向量x映射成向量Ax,取其在向量x范数为1所构成的闭集下的向量Ax范数最大值作为矩阵A的范数,即矩阵对向量缩放的比例的上界,矩阵的算子范数是相容的。由几何意义

4、可知,矩阵的算子范数必然大于等于矩阵谱半径(最大特征值的绝对值),矩阵算子范数对应一个取到向量Ax范数最大时的向量x方向,谱半径对应最大特征值下的特征向量的方向。而矩阵的奇异值分解SVD,分解成左右各一个酉阵,和拟对角矩阵,可以理解为对向量先作旋转、再缩放、最后再旋转,奇异值,就是缩放的比例,最大奇异值就是谱半径的推广,所以,矩阵算子范数大于等于矩阵的最大奇异值,酉阵在此算子范数的意义下,范数大于等于1。此外,不同的矩阵范数是等价的。范数理论是矩阵分析的基础,度量向量之间的距离、求极限等都会用到范数,范数还在机器学习、模式识别领域有着广泛的应用。矩阵范数的应用矩阵范数的应用与应用领域有关,在计算机领域中,应用比较多的是迭代过程中收敛性质的判断。迭代前后步骤的差值的范数表示其大小,常用的是二范数,其值越小表示越逼近实际值,可以认为达到要求的精度,即收敛。总的来说,范数的本质是距离,存在的意义是为了实现比较。困惑经常遇到双竖线包括的矩阵,若是简单的矩阵运算,它有严格的数学计算形式,比较容易接受。但是在优化算法中,经常看到同样的描述,有时候写作,有时候记作,对矩阵范数展开,它的展开形式是 ,还是?,有这方面困惑主要原因是自己数学知识功底不深,另外文献写作的格式不统一,这样的情况下,我无法判断出来这些表达式之间的区别。如果你在这方面有造诣,那么请不吝指教,欢迎给我留言。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁