《消除回归方程多重共线性问题(共3页).doc》由会员分享,可在线阅读,更多相关《消除回归方程多重共线性问题(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第四章 案例分析一、研究的目的要求近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。二、模型设定及其估计经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。为此,考虑的影响
2、因素主要有国内旅游人数,城镇居民人均旅游支出,农村居民人均旅游支出,并以公路里程和铁路里程作为相关基础设施的代表。为此设定了如下对数形式的计量经济模型:其中 :第t年全国旅游收入国内旅游人数 (万人)城镇居民人均旅游支出 (元)农村居民人均旅游支出 (元)公路里程(万公里)铁路里程(万公里) 为估计模型参数,收集旅游事业发展最快的19942003年的统计数据,如表4.2所示:表4.2 1994年2003年中国旅游收入及相关数据年份国内旅游收入Y(亿元)国内旅游人数X2(万人次)城镇居民人均旅游支出X3(元)农村居民人均旅游支出X4 (元)公路里程 X5(万公里)铁路里程X6(万公里)19941
3、023.552400414.754.9111.785.9019951375.762900464.061.5115.705.9719961638.463900534.170.5118.586.4919972112.764400599.8145.7122.646.6019982391.269450607.0197.0127.856.6419992831.971900614.8249.5135.176.7420003175.574400678.6226.6140.276.8720013522.478400708.3212.7169.807.0120023878.487800739.7209.1176
4、.527.1920033442.387000684.9200.0180.987.30数据来源:中国统计年鉴2004利用Eviews软件,输入Y、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS回归,结果如表4.3: 表4.3由此可见,该模型,可决系数很高,F检验值173.3525,明显显著。但是当时,不仅、系数的t检验不显著,而且系数的符号与预期的相反,这表明很可能存在严重的多重共线性。计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations”得相关系数矩阵(如表4.4):表4.4由相关系数矩阵可以看出:各解释变量相互之间的相关系数
5、较高,证实确实存在严重多重共线性。三、消除多重共线性采用逐步回归的办法,去检验和解决多重共线性问题。分别作Y对X2、X3、X4、X5、X6的一元回归,结果如表4.5所示:表4.5变量X2X3X4X5X6参数估计值0.08429.052311.667334.33242014.146t 统计量8.665913.15985.19676.46758.74870.90370.95580.77150.83940.9054按的大小排序为:X3、X6、X2、X5、X4。以X3为基础,顺次加入其他变量逐步回归。首先加入X6回归结果为: t=(2.9086) (0.46214) 当取时,X6参数的t检验不显著,予
6、以剔除,加入X2回归得 t=(4.2839) (2.1512) X2参数的t检验不显著,予以剔除,加入X5回归得t=(6.6446) (2.6584) X3、X5参数的t检验显著,保留X5,再加入X4回归得t=(3.) (4.) (3.06767) F=231.7935 DW=1.当取时,,X3、X4、X5系数的t检验都显著,这是最后消除多重共线性的结果。这说明,在其他因素不变的情况下,当城镇居民人均旅游支出和农村居民人均旅游支出分别增长1元时,国内旅游收入将分别增长4.21亿元和3.22亿元。在其他因素不变的情况下,作为旅游设施的代表,公路里程每增加1万公里时, 国内旅游收入将增长13.63亿元。专心-专注-专业