《第一章功率半导体器件(共20页).doc》由会员分享,可在线阅读,更多相关《第一章功率半导体器件(共20页).doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第一章 功率半导体器件1.1 概述1.1.1 功率半导体器件的定义图1-1为电力电子装置的示意图,输入电功率经功率变换器变换后输出至负载。功率变换器即为通常所说的电力电子电路(也称主电路),它由电力电子器件构成。目前,除了在大功率高频微波电路中仍使用真空管(电真空器件)外,其余的电力电子电路均由功率半导体器件组成。图1-1 电力电子装置示意图一个理想的功率半导体器件、应该具有好的静态和动态特性,在截止状态时能承受高电压且漏电流要小;在导通状态时,能流过大电流和很低的管压降;在开关转换时,具有短的开、关时间;通态损耗、断态损耗和开关损耗均要小。同时能承受高的di/dt和
2、du/dt以及具有全控功能。1.1.2 功率半导体器件的发展功率半导体器件是电力电子技术的基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由功率半导体器件构成的变流器时代。功率半导体器件的发展经历了以下阶段:大功率二极管产生于20世纪40年代,是功率半导体器件中结构最简单、使用最广泛的一种器件。目前已形成整流二极管(Rectifier Diode)、快恢复二极管(Fast Recovery DiodeFRD)和肖特基二极管(Schottky Barrier DiodeSBD)等3种主
3、要类型。晶闸管(Thyristor, or Silicon Controlled RectifierSCR)可以算作是第一代电力电子器件,它的出现使电力电子技术发生了根本性的变化。但它是一种无自关断能力的半控器件,应用中必须考虑关断方式问题,电路结构上必须设置关断(换流)电路,大大复杂了电路结构、增加了成本、限制了在频率较高的电力电子电路中的应用。此外晶闸管的开关频率也不高,难于实现变流装置的高频化。晶闸管的派生器件有逆导晶闸管、双向晶闸管、光控晶闸管等。20世纪70年代出现了称之为第二代的自关断器件,如门极可关断晶闸管(Gate-Turn-Off ThyristorGTO),大功率双极型晶体
4、管(Bipolar Junction TransistorBJT, or Giant TransistorGTR),功率场效应管(Power Metal Oxide Semiconductor Field Effect TransistorPower MOSFET)等。20世纪80年代出现了以绝缘栅极双极型晶体管(Insulated-gate Bipolar TransistorIGBT, or IGT)为代表的第三代复合导电机构的场控半导体器件。20世纪80年代后期,功率半导体器件的发展趋势为模块化、集成化,按照电力电子电路的各种拓朴结构,将多个相同的功率半导体器件或不同的功率半导体器件封装
5、在一个模块中,这样可缩小器件体积、降低成本、提高可靠性。值得指出的是新的一代器件的出现并不意味着老的器件被淘汰,世界上SCR产量仍占全部功率半导体器件总数的一半,是目前高压、大电流装置中不可替代的元件。1.1.3 功率半导体器件的分类功率半导体器件可按可控性、驱动信号类型来进行分类。1按可控性分类根据能被驱动(触发)电路输出控制信号所控制的程度,可将功率半导体器件分为不控型器件、半控型器件、全控型器件等3种。(1)不控型器件不能用控制信号来控制开通、关断的功率半导体器件。(2)半控型器件能利用控制信号控制其导通,但不能控制其关断的功率半导体器件称为半控型器件。(3)全控型器件能利用控制信号控制
6、其导通,也能控制其关断的功率半导体器件称为全控型器件,通常也称为自关断器件。2按驱动信号类型分类(1)电流驱动型通过在控制端注入或抽出电流来实现开通或关断的器件称为电流驱动型功率半导体器件。GTO、GTR为电流驱动型功率半导体器件。(2)电压驱动型通过在控制端和另一公共得端加入一定的电压信号来实现开通或关断的器件称为电压驱动型功率半导体器件。P-MOSFET、IGBT为电压驱动型功率半导体器件。1.2 大功率二极管1.2.1 大功率二极管的结构大功率二极管的内部结构是一个具有型及型两层半导体、一个PN结和阳极A、阴极K的两层两端半导体器件,其符号表示如图1-2a)所示。 a) 符号 b) 螺旋
7、式 c) 平板式 图1-2 大功率二极管从外部构成看,也分成管芯和散热器两部分。这是由于二极管工作时管芯中要通过强大的电流,而PN结又有一定的正向电阻,管芯要因损耗而发热。为了管芯的冷却,必须配备散热器。一般情况下,200A以下的管芯采用螺旋式(图1-2b),200A以上则采用平板式(图1-2c)。1.2.2 大功率二极管的特性1大功率二极管的伏安特性二极管阳极和阴极间的电压Uak与阳极电流ia间的关系称为伏安特性,如图1-3所示。第象限为正向特性区,表现为正向导通状态。第象限为反向特性区,表现为反向阻断状态。 a)实际特性 b)理想特性图1-3 大功率二极管的伏安特性 2大功率二极管的开通、
8、关断特性大功率二极管具有延迟导通和延迟关断的特征,关断时会出现瞬时反向电流和瞬时反向过电压。(1)大功率二极管的开通过程大功率二极管的开通需一定的过程,初期出现较高的瞬态压降,过一段时间后才达到稳定,且导通压降很小。图1-4为大功率二极管开通过程中的管压降uD和正向电流iD的变化曲线。由图可见,在正向恢复时间tfr内,正在开通的大功率二极管上承受的峰值电压UDM比稳态管压降高的多,在有些二极管中的峰值电压可达几十伏。图1-4 大功率二极管的开通过程 图1-5 大功率二极管的关断过程(2)大功率二极管的关断过程图1-5为大功率二极管关断过程电压、电流波形。大功率二极管应用在低频整流电路时可不考虑
9、其动态过程,但在高频逆变器、高频整流器、缓冲电路等频率较高的电力电子电路中就要考虑大功率二极管的开通、关断等动态过程。1.2.3 大功率二极管的主要参数1、额定正向平均电流(额定电流)IF指在规定40的环境温度和标准散热条件下,元件结温达额定且稳定时,容许长时间连续流过工频正弦半波电流的平均值。将此电流整化到等于或小于规定的电流等级,则为该二极管的额定电流。在选用大功率二极管时,应按元件允许通过的电流有效值来选取。对应额定电流IF的有效值为1.57IF。2、反向重复峰值电压(额定电压)RRM在额定结温条件下,元件反向伏安特性曲线(第象限)急剧拐弯处于所对应的反向峰值电压称为反向不重复峰值电压U
10、RSM。反向不重复峰值电压值的80称为反向重复峰值电压URRM。再将URRM整化到等于或小于该值的电压等级,即为元件的额定电压。3、反向漏电流IRR对应于反向重复峰值电压URRM下的平均漏电流称为反向重复平均电流IRR。4、正向平均电压UF在规定的40环境温度和标准的散热条件下,元件通以工频正弦半波额定正向平均电流时,元件阳、阴极间电压的平均值,有时亦称为管压降。元件发热与损耗与UF有关,一般应选用管压降小的元件以降低元件的导通损耗。5、大功率二极管的型号普通型大功率二极管型号用ZP表示,其中Z代表整流特性,P为普通型。普通型大功率二极管型号可表示如下ZP电流等级电压等级/100通态平均电压组
11、别如型号为ZP5016的大功率二极管表示:普通型大功率二极管,额定电流为50A,额定电压为1600V。1.3 晶闸管(SCR)1.3.1 晶闸管的结构晶闸管是大功率的半导体器件,从总体结构上看,可区分为管芯及散热器两大部分,分别如图1-6及图1-7所示。 a) 螺栓型 b)平板型 c)符号图1-6 晶闸管管芯及电路符号表示 管芯是晶闸管的本体部分,由半导体材料构成,具有三个与外电路可以连接的电极:阳极,阴极和门极(或称控制极),其电路图中符号表示如图1-6c)所示。散热器则是为了将管芯在工作时由损耗产生的热量带走而设置的冷却器。按照晶闸管管芯与散热器间的安装方式,晶闸管可分为螺栓型与平板型两种
12、。螺栓型(图1-6a)依靠螺栓将管芯与散热器紧密连接在一起,并靠相互接触的一个面传递热量。a)自冷 b)风冷 c)水冷 图1-7 晶闸管的散热器晶闸管管芯的内部结构如图1-3所示,是一个四层(P1N1P2N2)三端(A、K、G)的功率半导体器件。它是在N型的硅基片(N1)的两边扩散型半导体杂质层(P1、P2),形成了两个PN结J1、J2。再在P2层内扩散型半导体杂质层N2又形成另一个PN结J3。然后在相应位置放置钼片作电极,引出阳极A,阴极K及门极G,形成了一个四层三端的大功率电子元件。这个四层半导体器件由于有三个PN结的存在,决定了它的可控导通特性。图1-8 晶闸管管芯结构原理图 1.3.2
13、 晶闸管的工作原理通过理论分析和实验验证表明:1) 只有当晶闸管同时承受正向阳极电压和正向门极电压时晶闸管才能导通,两者不可缺一。2) 晶闸管一旦导通后门极将失去控制作用,门极电压对管子随后的导通或关断均不起作用,故使晶闸管导通的门极电压不必是一个持续的直流电压,只要是一个具有一定宽度的正向脉冲电压即可,脉冲的宽度与晶闸管的开通特性及负载性质有关。这个脉冲常称之为触发脉冲。3) 要使已导通的晶闸管关断,必须使阳极电流降低到某一数值之下(约几十毫安)。这可以通过增大负载电阻,降低阳极电压至接近于零或施加反向阳极电压来实现。这个能保持晶闸管导通的最小电流称为维持电流,是晶闸管的一个重要参数。晶闸管
14、为什么会有以上导通和关断的特性,这与晶闸管内部发生的物理过程有关。晶闸管是一个具有P1N1P2N2四层半导体的器件,内部形成有三个PN结J1、J2、J3,晶闸管承受正向阳极电压时,其中J1、J3承受反向阻断电压,J2承受正向阻断电压。这三个PN结的功能可以看作是一个PNP型三极管VT1(P1N1P2)和一个NPN型三极管VT2(N1P2N2)构成的复合作用,如图1-9所示。图1-9 晶闸管的等效复合三极管效应可以看出,两个晶体管连接的特点是一个晶体管的集电极电流就是另一个晶体管的基极电流,当有足够的门极电流Ig流入时,两个相互复合的晶体管电路就会形成强烈的正反馈,导致两个晶体管饱和导通,也即晶
15、闸管的导通。如果晶闸管承受的是反向阳极电压,由于等效晶体管VT1、VT2均处于反压状态,无论有无门极电流Ig,晶闸管都不能导通。1.3.3 晶闸管的基本特性1静态特性静态特性又称伏安特性,指的是器件端电压与电流的关系。这里介绍阳极伏安特性和门极伏安特性。(1) 阳极伏安特性晶闸管的阳极伏安特性表示晶闸管阳极与阴极之间的电压Uak与阳极电流ia之间的关系曲线,如图1-10所示。图1-10 晶闸管阳极伏安特性 正向阻断高阻区;负阻区;正向导通低阻区;反向阻断高阻区阳极伏安特性可以划分为两个区域:第象限为正向特性区,第象限为反向特性区。第象限的正向特性又可分为正向阻断状态及正向导通状态。(2) 门极
16、伏安特性晶闸管的门极与阴极间存在着一个PN结J3,门极伏安特性就是指这个PN结上正向门极电压Ug与门极电流Ig间的关系。由于这个结的伏安特性很分散,无法找到一条典型的代表曲线,只能用一条极限高阻门极特性和一条极限低阻门极特性之间的一片区域来代表所有元件的门极伏安特性,如图1-11阴影区域所示。图1-11 晶闸管门极伏安特性2动态特性晶闸管常应用于低频的相控电力电子电路时,有时也在高频电力电子电路中得到应用,如逆变器等。在高频电路应用时,需要严格地考虑晶闸管的开关特性,即开通特性和关断特性。(1)开通特性晶闸管由截止转为导通的过程为开通过程。图1-12给出了晶闸管的开关特性。在晶闸管处在正向阻断
17、的条件下突加门极触发电流,由于晶闸管内部正反馈过程及外电路电感的影响,阳极电流的增长需要一定的时间。从突加门极电流时刻到阳极电流上升到稳定值IT的10%所需的时间称为延迟时间td,而阳极电流从10%IT上升到90%IT所需的时间称为上升时间tr,延迟时间与上升时间之和为晶闸管的开通时间tgt=td+tr,普通晶闸管的延迟时间为0.51.5s,上升时间为0.53s。延迟时间随门极电流的增大而减少,延迟时间和上升时间随阳极电压上升而下降。图1-12 晶闸管的开关特性(2)关断特性通常采用外加反压的方法将已导通的晶闸管关断。反压可利用电源、负载和辅助换流电路来提供。要关断已导通的晶闸管,通常给晶闸管
18、加反向阳极电压。晶闸管的关断,就是要使各层区内载流子消失,使元件对正向阳极电压恢复阻断能力。突加反向阳极电压后,由于外电路电感的存在,晶闸管阳极电流的下降会有一个过程,当阳极电流过零,也会出现反向恢复电流,反向电流达最大值IRM后,再朝反方向快速衰减接近于零,此时晶闸管恢复对反向电压的阻断能力。1.3.4 晶闸管的主要参数要正确使用一个晶闸管,除了了解晶闸管的静态、动态特性外,还必须定量地掌握晶闸管的一些主要参数。现对经常使用的几个晶闸管的参数作一介绍。1电压参数(1) 断态重复峰值电压UDRM 门极开路,元件额定结温时,从晶闸管阳极伏安特性正向阻断高阻区(图1-10中的曲线)漏电流急剧增长的
19、拐弯处所决定的电压称断态不重复峰值电压UDSM,“不重复”表明这个电压不可长期重复施加。取断态不重复峰值电压的90定义为断态重复峰值电压UDRM,“重复”表示这个电压可以以每秒50次,每次持续时间不大于10ms的重复方式施加于元件上。(2) 反向重复峰值电压URRM 门极开路,元件额定结温时,从晶闸管阳极伏安特性反向阻断高阻区(图1-10中曲线)反向漏电流急剧增长的拐弯处所决定的的电压称为反向不重复峰值电压URSM,这个电压是不能长期重复施加的。取反向不重复峰值电压的90定义为反向重复峰值电压URRM,这个电压允许重复施加。(3) 晶闸管的额定电压UR 取UDRM和URRM中较小的一个,并整化
20、至等于或小于该值的规定电压等级上。电压等级不是任意决定的,额定电压在1000以下是每100一个电压等级,1000至3000则是每200一个电压等级。由于晶闸管工作中可能会遭受到一些意想不到的瞬时过电压,为了确保管子安全运行,在选用晶闸管时应使其额定电压为正常工作电压峰值UM的23倍,以作安全余量。UR =(23)UM (1-4)(4) 通态平均电压UT(AV)指在晶闸管通过单相工频正弦半波电流,额定结温、额定平均电流下,晶闸管阳极与阴极间电压的平均值,也称之为管压降。在晶闸管型号中,常按通态平均电压的数值进行分组,以大写英文字母AI表示。通态平均电压影响元件的损耗与发热,应该选用管压降小的元件
21、来使用。2电流参数(1) 通态平均电流IT(AV) 在环境温度为40、规定的冷却条件下,晶闸管元件在电阻性负载的单相、工频、正弦半波、导通角不小于170的电路中,当结温稳定在额定值125时所允许的通态时的最大平均电流称为额定通态平均电流IT(AV)。选用晶闸管时应根据有效电流相等的原则来确定晶闸管的额定电流。由于晶闸管的过载能力小,为保证安全可靠工作,所选用晶闸管的额定电流IT(AV)应使其对应有效值电流为实际流过电流有效值的1.52倍。按晶闸管额定电流的定义,一个额定电流为100A的晶闸管,其允许通过的电流有效值为157A。晶闸管额定电流的选择可按下式计算。 (1-5)(2) 维持电流IH
22、维持电流是指晶闸管维持导通所必需的最小电流,一般为几十到几百毫安。维持电流与结温有关,结温越高,维持电流越小,晶闸管越难关断。(3) 掣住电流IL 晶闸管刚从阻断状态转变为导通状态并撤除门极触发信号,此时要维持元件导通所需的最小阳极电流称为掣住电流。一般掣住电流比维持电流大(24)倍。3晶闸管的型号普通型晶闸管型号可表示如下KP电流等级电压等级/100通态平均电压组别其中其中K代表闸流特性,P为普通型。如KP50015型号的晶闸管表示其通态平均电流(额定电流)IT(AV)为500A,正反向重复峰值电压(额定电压)UR为1500V,通态平均电压组别以英文字母标出,小容量的元件可不标。1.4 大功
23、率晶体管(GTR)1.4.1 结构从工作原理和基本特性上看,大功率晶体管与普通晶体管并无本质上的差别,但它们在在工作特性的侧重面上有较大的差别。对于普通晶体管,所被注重的特性参数为电流放大倍数、线性度、频率响应、噪声、温漂等;而对于大功率晶体管,重要参数是击穿电压、最大允许功耗、开关速度等。为了承受高压大电流、大功率晶体管不仅尺寸要随容量的增加而加大,其内部结构、外形也需作相应的变化。a)普通晶体管结构 b)GTR结构 c)符号图1-19 GTR的结构与符号普通晶体管的结构已在模拟电子技术中作过专门介绍,它是由两个PN结相间而成。图1-19a)为NPN型普通晶体管的结构示意图。图1-19b)为
24、GTR的结构原理图,一个GTR芯片包含大量的并联晶体管单元,这些晶体管单元共用一个大面积集电极,而发射极和基极则被化整为零。这种结构可以有效解决所谓的发射极电流聚边现象。图1-19c)为GTR的标识符号,与普通晶体管完全相同。1.4.2 工作特性1静态特性GTR的静态特性可分为输入特性和输出特性:(1)输入特性输入特性如图1-20a)所示,它表示UCE一定时,基极电流IB与基极发射极UBE之间的函数关系,它与二极管PN结的正向伏安特性相似。当UCE增大时,输入特性右移。一般情况下,GTR的正向偏压UBE大约为1V。a) 输入特性 b) 输出特性 图1-20 GTR的输入、输出特性(2)输出特性
25、大功率晶体管运行时常采用共射极接法,共射极电路的输出特性是指集电极电流IC和集电极发射极电压UCE的函数关系,如图1-20b)所示。由图中可以看出,GTR的工作状态可以分成四个区域:截止区(也称阻断区)、线性放大区、准饱和区和饱和区(也称深饱和区)。截止区对应于基极电流IB等于零的情况,在该区域中,GTR承受高电压,仅有很小的漏电流存在,相当于开关处于断态的情况。该区的特点是发射结和集电结均为反向偏置。在线性放大区中,集电极电流与基极电流呈线性关系,特性曲线近似平直。该区的特点是集电结反向偏置、发射结正向偏置。对工作于开关状态的GTR来说,应当尽量避免工作于线性放大区,否则由于工作在高电压大电
26、流下,功耗会很大。准饱和区是指线性放大区和饱和区之间的区域,正是输出特性中明显弯曲的部分。在此区域中,随着基区电流的增加,开始出现基区宽调制效应,电流增益开始下降,集电极电流与基区电流之间不再呈线性关系,但仍保持着发射结正偏、集电极反偏。而在饱和区中,在基极电流变化时,集电极电流却不再随之变化。此时,该区域的电流增益与导通电压均很小,相当于处于通态的开关。此区的特点是发射结和集电结均处于 正向偏置状态。2动态特性GTR主要工作在截止区及饱和区,切换过程中快速通过放大区,这个开关过程即反映了GTR的动态特性。当在GTR基极施以脉冲驱动信号时,GTR将工作在开关状态,如图1-21所示。在t0时刻加
27、入正向基极电流,GTR经延迟和上升阶段后达到饱和区,故开通时间ton为延迟时间td与上升时间tr之和,其中td是由基极与发射极间结电容Cbe充电而引起,tr是由基区电荷储存需要一定时间而造成的。当反向基极电流信号加到基极时,GTR经存储和下降阶段才返回载止区,则关断时间toff为存储时间ts与下降时间tf之和,其中ts是除去基区超量储存电荷过程引起的,tf是基极与发射极间结电容Cbe放电而产生的结果。在实际应用时,增大驱动电流,可使td和tr都减小,但电流也不能太大,否则将增大存储时间。在关断GTR时,加反向基极电压可加快电容上电荷的释放,从而减少ts与tf,但基极电压不能太大,以免使发射结击
28、穿。为提高GTR的开关速度,可选用结电容比较小的快速开关晶体管,也可利用加速电容来改善GTR的开关特性。在GTR基极电路电阻Rb两端并联一电容Cs,利用换流瞬间其上电压不能突变的特性可改善晶体管的开关特性。图1-21 GTR动态等值电路及开关特性1.4.3 主要参数1电压参数(1) 集电极额定电压UCEM加在GTR上的电压如超过规定值时,会出现电压击穿现象。击穿电压与GTR本身特性及外电路的接法有关。各种不同接法时的击穿电压的关系如下BUCBOBUCEXBUCESBUCERBUCEO其中,BUCBO为发射极开路,集电极与基极间的反向击穿电压;BUCEX为发射极反向偏置时集电极与发射极间的击穿电
29、压;BUCES、BUCER分别为发射极与基极间用电阻联接或短路连接时集电极和发射极间的击穿电压;BUCEO为基极开路时集电极和发射极间的击穿电压。GTR的最高工作电压UCEM应比最小击穿BUCEO低,从而保证元件工作安全。(2) 饱和压降UCES单个GTR的饱和压降一般不超过11.5V,UCES随集电极电流ICM的增大而增大。2电流参数(1) 连续(直流)额定(集电极)电流IC连续(直流)额定电流指只要保证结温不超过允许的最大结温、晶体管所允许连续通过的直流电流值。(2) 集电极额定电流(最大允许电流)ICM 集电极额定电流是取决于最高允许结温下引线、硅片等的破坏电流,超过这一额定值必将导致晶
30、体管内部结构件的烧毁。在实际使用中可以利用热容量效应,根据占空比来增大连续电流,但不能超过峰值额定电流。(3) 基极电流最大允许值IBM基极电流最大允许值比集电极额定电流的数值要小得多,通常IBM=(1/21/10)ICM,而基极发射极间的最大电压额定值通常只有几伏。(4) 集电极最大耗散功率PCM集电极最大耗散功率是指最高工作温度下允许的耗散功率。它受结温的限制,由集电极工作电压和电流的乘积所决定。1.4.4 二次击穿现象与安全工作区1二次击穿现象二次击穿是GTR突然损坏的主要原因之一,成为影响其安全可靠使用的一个重要因素。二次击穿现象可以用图1-22来说明。当集电极电压UCE增大到集射极间
31、的击穿电压UCEO时,集电极电流iC将急剧增大,出现击穿现象,如图1-22a)的AB段所示。这是首次出现正常性质的雪崩现象,称为一次击穿,一般不会损坏GTR器件。一次击穿后如继续增大外加电压UCE,电流iC将持续增长。当达到图示的C点时仍继续让GTR工作时,由于UCE高,将产生相当大的能量,使集电结局部过热。当过热持续时间超过一定程度时,UCE会急剧下降至某一低电压值,如果没有限流措施,则将进入低电压、大电流的负阻区CD段,电流增长直至元件烧毁。这种向低电压大电流状态的跃变称为二次击穿,C点为二次击穿的临界点。所以二次击穿是在极短的时间内(纳秒至微秒级),能量在半导体处局部集中,形成热斑点,导
32、致热电击穿的过程。 a) b)图1-22 GTR的二次击穿现象二次击穿在基极正偏(IB0)、反偏(IB0)及基极开路的零偏状态下均成立,如图1-22b)所示。把不同基极偏置状态下开始发生二次击穿所对应的临界点连接起来,可形成二次击穿临界线。由于正偏时二次击穿所需功率往往小于元件的功率容量PCM,故正偏对GTR安全造成的威胁最大。反偏工作时尽管集电极电流很小,但在电感负载下关断时将有感应电势迭加在电源电压上形成高压,也能使瞬时功率超过元件的功率容量而造成二次击穿。为了防止发生二次击穿,重要的是保证GTR开关过程中瞬时功率不要超过允许的功率容量PCM,这可通过规定GTR的安全工作区及采用缓冲(吸收
33、)电路来实现。2安全工作区二次击穿在基极正偏(IB0)、反偏(IBUGS(th)时才会出现导电沟道,产生栅极电流ID。图1-25 漏极伏安特性 图1-26 转移特性2开关特性P-MOSFET是多数载流子器件,不存在少数载流子特有的存贮效应,因此开关时间很短,典型值为20ns,而影响开关速度的主要是器件极间电容。图1-27为元件极间电容的等效电路,从中可以求得器件输入电容为CinCGSCGD。正是Cin在开关过程中需要进行充、放电,影响了开关速度。同时也可看出,静态时虽栅极电流很小,驱动功率小,但动态时由于电容充放电电流有一定强度,故动态驱动仍需一定的栅极功率。开关频率越高,栅极驱动功率也越大。
34、P-MOSFET的开关过程如图1-28所示,其中UP为驱动电源信号,UGS为栅极电压,iD为漏极电流。当UP信号到来时,输入电容Cin有一充电过程,使栅极电压UGS只能按指数规律上升。P-MOSFET的开通时间为tontd(on)tr。当UP信号下降为零后,栅极输入电容in上贮存的电荷将通过信号源进行放电,使栅极电压UGS按指数下降,到UP结束后的td(off)时刻,iD电流才开始减小,故td(off)称为关断延迟时间。P-MOSFET的关断时间应为tofftd(off)tf。图1-27 输入电容等效电路 图1-28 开关特性1.5.3 主要参数与安全工作区1主要参数(1)漏极电压UDS 漏极
35、电压UDS为P-MOSFET的电压定额。(2) 电流定额ID电流定额ID为漏极直流电流,IDM为漏极脉冲电流幅值。(3) 栅源电压UGS栅源间加的电压不能大于此电压,否则将击穿元件。2安全工作区P-MOSFET是多数载流子工作的器件,元件的通态电阻具有正的温度系数,即温度升高通态电阻增大,使漏极电流能随温度升高而下降,因而不存在电流集中和二次击穿的限制,有较宽的安全工作区。P-MOSFET的正向偏置安全工作区由四条边界包围框成,如图1-29所示。其中为漏源通态电阻限制线;为最大漏极电流IDM限制线;为最大功耗限制线;为最大漏源电压限制线。图1-29 P-MOSFET正向偏置安全工作区 1.6
36、绝缘栅双极型晶体管(IGBT)1.6.1 结构与工作原理1结构IGBT的基本结构如图1-30a)所示,与P-MOSFET结构十分相似,相当于一个用MOSFET驱动的厚基区PNP晶体管。仔细观察发现其内部实际上包含了两个双极型晶体管P+NP及N+PN,它们又组合成了一个等效的晶闸管。这个等效晶闸管将在IGBT器件使用中引起一种“擎住效应”,会影响IGBT的安全使用。a) 结构示意图 b) 等效电路 c) 符号图1-30 IGBT示意图2工作原理IGBT的等效电路如图1-30b)所示,是以PNP型厚基区GTR为主导元件、N沟道MOSFET为驱动元件的达林顿电路结构器件,Rdr为GTR基区内的调制电
37、阻。图1-30c)则是IGBT的电路符号。IGBT的开通与关断由栅极电压控制。栅极上加正向电压时MOSFET内部形成沟道,使IGBT高阻断态转入低阻通态。在栅极加上反向电压后,MOSFET中的导电沟道消除,PNP型晶体管的基极电流被切断,IGBT关断。1.6.2 工作特性1静态特性IGBT的静态特性主要有输出特性及转移特性,如图1-31所示。输出特性表达了集电极电流IC与集电极发射极间电压UCE之间的关系,分饱和区、放大区及击穿区。IGBT的转移特性表示了栅极电压UG对集电极电流IC的控制关系。在大部分范围内,IC与UG呈线性关系。 a) 输出特性 b) 转移特性图1-31 IGBT的输出特性
38、和转移特性2动态特性IGBT的动态特性即开关特性,如图1-32所示,其开通过程主要由其MOSFET结构决定。当栅极电压UG达开启电压UG(th)后,集电极电流IC迅速增长,其中栅极电压从负偏置值增大至开启电压所需时间td(on)为开通延迟时间;集电极电流由10额定增长至90额定所需时间为电流上升时间tri,故总的开通时间为tontd(on)tri。IGBT的关断过程较为复杂,其中UG由正常15V降至开启电压UT所需时间为关断延迟时间td(off),自此IC开始衰减。集电极电流由90额定值下降至10额定所需时间为下降时间tfitfi1tfi2,其中tfi1对应器件中MOSFET部分的关断过程,t
39、fi2对应器件中PNP晶体管中存贮电荷的消失过程。由于经tfi1时间后MOSFET结构已关断,IGBT又未承受反压,器件内存贮电荷难以被迅速消除,所以集电极电流需较长时间下降,形成电流拖尾现象。由于此时集射极电压Uce已建立,电流的过长拖尾将形成较大功耗使结温升高。总的关断时间则为tofftd(off)tfi。图1-32 IGBT的开关特性1.6.3 擎住效应和安全工作区1擎住效应如前所述,在IGBT管内存在一个由两个晶体管构成的寄生晶闸管,同时P基区内存在一个体区电阻Rbr,跨接在N+PN晶体管的基极与发射极之间,P基区的横向空穴电流会在其上产生压降,在J3结上形成一个正向偏置电压。若IGB
40、T的集电极电流IC大到一定程度,这个Rbr上的电压足以使N+PN晶体管开通,经过连锁反应,可使寄生晶闸管导通,从而IGBT栅极对器件失去控制,这就是所谓的擎住效应。它将使IGBT集电极电流增大,产生过高功耗导致器件损坏。擎住现象有静态与动态之分。静态擎住指通态集电极电流大于某临界值ICM后产生的擎住现象,对此规定有IGBT最大集电极电流ICM的限制。动态擎住现象是指关断过程中产生的擎住现象。IGBT关断时,MOSFET结构部分关断速度很快,J2结的反压迅速建立,反压建立速度与IGBT所受重加dUCE/dt大小有关。dUCE/dt越大,J2结反压建立越快,关断越迅速,但在J2结上引起的位移电流CJ2(dUCE/dt)也越大。此位移电流流过体区电阻Rbr时可产生足以使N+PN管导通的正向偏置电压,使寄