《九江学院历年(20142015)专升本数学真题(共44页).doc》由会员分享,可在线阅读,更多相关《九江学院历年(20142015)专升本数学真题(共44页).doc(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上九江学院2015年“专升本”高等数学试卷一、填空题:(每题3分,共18分)1.如果,且一阶导数小于0,则是单调_。2设 ,则_。3设,则_。4_。5设,则_。6. 交换二重积分的积分次序,_。二、选择题(每题3分,共24分)1设 ,则( ) A B 0 C 10 D 不存在2( ) A 0 B 1 C D 不存在3设 在点处,下列错误的是( ) A 左极限存在 B 连续 C 可导 D 极限存在4在横坐标为4处的切线方程是( ) A B C D 5下列积分,值为0的是( ) A B C D 6.下列广义积分收敛的是( ) A B C D 7.微分方程的通解为( ) A
2、B C D 8.幂级数的收敛域为( ) A B C D 三、判断题:(每题2分,共10分)1无穷小的代数和仍为无穷小。( )2方程在内没有实根。( )3. 函数的极值点,一定在导数为0的点和导数不存在的点中取得。( )4如果在点处可微,则在处的偏导数存在。( )5级数发散。( )四、计算下列各题(共48分)1 (5分)2 (5分)3. 求(5分)4,求(5分)5计算二重积分,D是由抛物线和直线所围成的闭区域。(7分)6.求微分方程,初始条件为的特解。(7分)7.将函数展开成关于的幂级数,并指出收敛域。(7分)8. 求表面积为而体积为最大的长方体的体积。(7分)九江学院2013年“专升本”高等数
3、学试卷一、 选择题:(每题3分,共21分)1. 函数的定义域是( )A B C D 2. 如果在处可导,则( )A B 2 C 0 D 23. 极限( )A B C D 14. 函数的导数( )A B C D 5.下列广义积分中,收敛的是( )A B C D 6. 微分方程的通解为( )A B C D 7. 幂级数的收敛半径等于( )A B C D 二、填空题(每题3分,共21分)1. .2.设=在区间内连续,则常数 .3.曲线在处切线方程是 .4.设则 .5.过点(0,1,1)且与直线垂直的平面方程为 .6.设函数则 .7.交换的积分次序得 .三、判断题(Y代表正确,N代表错误,每小题2分,
4、共10分)1.曲线既有水平渐进性,又有垂直渐近线.( )2.设可导且则时,在点的微分是比低阶的无穷小( )3.若函数,满足且则函数在处取得极大值.( )4.等于平面区域D的面积.( )5.级数发散.( )四、计算题(每题6分,共24分)1.求极限2. 计算不定积分3. 设函数其中具有二阶连续偏导数,求五、解答题(每题8分,共24分)1.求二重积分其中D是由直线及轴所围成的区域.2. 求微分方程在初始条件下的特解.3.将函数展开成的幂级数,并指出收敛区间.九江学院2012年“专升本”高等数学试卷一、选择题:(每题3分,共18分)1下列极限正确的是( )A B C sin=1 D sin=12设函
5、数在处可导,且,则=( )A B 2 C D 3. 函数=在处的可导性、连续性为( )A 在处连续,但不可导 B 在处既不连续,也不可导C在处可导,但不连续 D 在处连续且可导4. 直线与平面的位置关系是( )A 直线在平面上 B 直线与平面平行C直线与平面垂直相交 D 直线与平面相交但不垂直5. 不定积分( )A C B C C C D C 6. 设,下列级数中肯定收敛的是( )A B C D 二、填空题(每题3分,共18分)1.若,则= .2. .3.= .4.交换二次积分次序: .5.设函数由方程所确定,则 .6.微分方程满足初始条件的特解是 .三、判断题(Y代表正确,N代表错误,每小题
6、2分,共10分)1.是函数的可去间断点.( )2.函数在处取得极小值,则必有.( )3.广义积分发散.( )4.函数在点(2,1)处的全微分是.( )5.若,则级数收敛.( )四、计算下列各题(每题8分,共48分)1.求极限 2. 计算下列不定积分.3. 求幂级数的收敛半径与收敛域.4. 计算其中D是由,及所围成的区域.5. 其中具有二阶偏导数,求6. 求微分方程的通解.五、 证明题(共6分)证明:当时,九江学院2011年“专升本”高等数学试卷一、填空题:(每题3分,共15分)1已知,则23无穷级数 (收敛或发散) 4微分方程的通解为 5过点且与直线垂直的平面方程为 (一般方程)二、选择题(每
7、题3分,共15分)1下列极限不存在的是( )A B C D 2已知,则( )A 1 B 2 C D 03设是连续函数,则( )A B C D4下列级数中条件收敛的是( )A B C D 5设函数的一个原函数是,则( )A B C D 三、计算题(每题6分,共30分)1求极限2 求不定积分3 已知,求4 求定积分5 求幂级数的收敛域四、解答及证明题(共40分)1做一个底为正方形,容积为108的长方形开口容器,怎样做使得所用材料最省?(8分)2 证明不等式: (7分)3 计算二重积分,其中是由曲线及坐标轴所围的在第一象限内的闭区域(8分)4 设函数其中具有二阶连续偏导数,求(9分)5求微分方程的通
8、解(8分)九江学院2010年“专升本”高等数学试卷一、填空题:(每题3分,共15分)1已知,则23曲面在点处的切平面方程为 4级数 。(收敛或发散) 5微分方程的通解为 二、选择题(每题3分,共15分)1已知,其中是常数( )A B C D 2曲线( )A 仅有水平渐近线 B 既有水平渐近线又有垂直渐近线 C 仅有垂直渐近线 D 既无水平渐近线又无垂直渐近线3若,则( )A B C D 4已知,则( )A 1 B -1 C 0 D 5改变二次积分的积分次序( )A B C D 三、计算下列各题(每小题7分,共35分)1求不定积分2 求由曲线与直线及所围成图形的面积3 求函数的二阶偏导数,(其中
9、具有二阶连续偏导数)4 求二重积分,其中是由两条抛物线所围成的闭区域。5 求幂级数的收敛半径及收敛域。四、解答及证明题(每小题8分,共40分)1设函数,为了使函数在处连续且可导,应取什么值?2 设函数由方程所确定,求3 设,用拉格朗日中值定理证明:4 求过点,且平行于平面,又与直线相交的直线的方程5 求微分方程的通解九江学院2009年“专升本”高等数学试卷一、填空题:(每题3分,共15分)1已知,则_.2已知在上连续,则_.3极限_.4已知,则_.5已知函数,则此函数在(2,1)处的全微分_.二、选择题:(每题3分,共15分)1设二阶可导,为曲线拐点的横坐标,且在处的二阶导数等于零,则在的两侧
10、( )A二阶导数同号 B.一阶导数同号 C.二阶导数异号 D.一阶导数异号2下列无穷级数绝对收敛的是( )A B C D3变换二次积分的顺序( )A B C D4已知,则( )A1 B-1 C0 D+5曲面在点(2,1,0)处的切平面方程为( )A B C D三、计算下列各题(每小题7分,共35分)1求极限2 求不定积分3 已知,求4 求定积分5 求二重积分,其中是由两坐标轴及直线所围成的闭区域。四、 求幂级数的收敛半径和收敛域。(9分)五、 已知,且具有二阶连续偏导数,试求。(9分)六、 求二阶微分方程的通解。(9分)七、设,证明不等式。(8分)九江学院2008年“专升本”高等数学试卷注:1
11、请考生将试题答案写在答题纸上,在试卷上答题无效.2凡在答题纸密封线以外有姓名、班级学号、记号的,以作弊论.3考试时间:120分钟一、 填空题(每题3分,共15分)1 设函数在处连续,则参数_.2 过曲线上的点(1,1)的切线方程为_.3 设,则_.4 设,且,则_.5 设,则的全微分_.二、 选择题(每题3分,共15分)1设的定义域为(0,1,则复合函数的定义域为( )A.(0,1) B.1,e C.(1,e D.(0,+)2设,则的单调增加区间是( )A.(-,0) B.(0,4) C.(4, +) D. (-,0)和(4, +)3函数为常数)在点处( )A.连续且可导 B.不连续且不可导
12、C.连续且不可导 D.可导但不连续4设函数,则等于( )A. B. C.0 D.5幂级数的收敛区间为( )A.-1,3 B.(-1,3 C.(-1,3) D.-1,3)三、计算题(每题7分,共42分)123 已知(为非零常数),求4 求直线和曲线及轴所围平面区域的面积.5 计算二重积分,其中是由所围平面区域.6 求微分方程的通解.四、 设二元函数,试验证(7分)五、 讨论曲线的凹凸性并求其拐点.(7分)六、 求幂级数的收敛域,并求其和函数.(9分)七、试证明:当时,(5分)九江学院2007年“专升本”高等数学试卷一、填空题(每小题3分,共15分)1已知在上连续,则_.2极限_.3已知,则_.4
13、在上的平均值为_.5过椭球上的点(1,1,1)的切平面为_.二、选择题(每小题3分,共15分)1若级数和都收敛,则级数( ) A.一定条件收敛 B.一定绝对收敛 C.一定发散 D.可能收敛,也可能发散2微分方程的通解为( ) A. B. C. D. 3已知,则的拐点的横坐标是( ) A. B. C. D. 和4设存在,则=( ) A. B. C. D.5等于( ) A.0 B. C.1 D.3三、 计算(每小题7分,共35分)1 求微分方程的通解.2 计算3 计算,其中是由抛物线和直线所围成的闭区域.4 将函数展开成的幂级数.5 求由方程所确定的隐函数的导数.四、 求极限(9分)五、设在0,1
14、上连续,证明:,并计算.(10分)六、 设连续函数满足方程,求.(10分)七、 求极限.(6分) 九江学院2006年“专升本”高等数学试卷一、填空题(每小题3分,共15分)1极限_.2设,则满足拉格朗日中值定理的_.3函数在点(1,1)的全微分是_.4设,已知是的反函数,则的一阶导数_.5中心在(1,-2,3)且与平面相切的球面方程是_.二、选择题(每小题3分,共15分)1下列各对函数中表示同一函数的是( )A. B.C. D.2当时,下列各对无穷小是等价的是( ) A. B. C. D.3已知函数的一阶导数,则( ) A. B. C. D. 4过点(1,-2,0)且与平面垂直的直线方程是(
15、) A. B. C. D.5幂级数的收敛区间为( ) A. B. C. D.三、 计算题(每小题5分,共40分)1 求极限2求摆线在处的切线方程.3 方程确定了一个隐函数,求.4 求不定积分5 求定积分6 求由抛物线与半圆所围成图形的面积.7 设为:,求二重积分8 求常系数线性齐次微分方程满足初始条件的特解.四、求函数的极值.(7分)五、 求幂级数的和函数.(7分)六、 应用中值定理证明不等式:(7分)七、求微分方程的通解.(9分)九江学院2005年“专升本”高等数学试卷一、填空题:(每题3分,共15分)1.函数在内有,则函数在内单调性为_,曲线的凸凹性为_。23级数的收敛半径为_4若,则5设
16、函数具有二阶连续导数,且,满足方程,则二、选择题(每题3分,共15分)1设,则( )A B C D 2函数在连续,则( )A 1 B 2 C 3 D 3下列广义积分收敛的是( )A B C D 4设,则( )A B C 2 D -25设平面:,:,则平面与的关系为( )A 平行但不重合 B 重合 C 斜交 D 垂直三、计算下列各题(每小题7分,共35分)1求极限2 若,求及3. 计算二重积分,其中是圆域4 设函数由方程确定,求5 求微分方程四、 求函数的极值点与极值。(9分)五、 设,求的值。(10分)六、 将函数展开成的幂级数。(9分)七、证明不等式,当时,。(7分)九江学院2004年“专升
17、本”高等数学试卷一、选择题:110小题,每小题4分,共40分。在每小题给出的四个选项中.只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。1. ( d ) A. 1 B. C. D.2.设函数,则( b ) A. B. C. D.3.已知,则( d ) A. 1 B. 2 C. 3 D. 4 4.下列函数在内单调增加的是( a ) A. B. C. D.5.( c ) A. B. C. D.6.( c )A. B. 0 C. D. 17.已知是的一个原函数,则( a ) A. B. C. D. 28.设函数,则( a )A. B. C. D.9.设,则( b )A. B. C. D.
18、 10.若随机事件与相互独立,而且,则A.0.2 B.0.4 C.0.5 D.0.9二、填空题:1120小题,每小题4分,共40分。把答案填写在题中横线上。11. 。12. 。13.设函数点处连续,则 。14.函数的极值点为 。15.设函数,则 。16.曲线在点(1,0)处的切线方程为 。17. 。18. 。19. 。20.设函数,则全微分 。三、解答题:2128小题,共70分。解答应写出推理、演算步骤21.(本题满分8分) 计算。22.(本题满分8分)设函数,求。23.(本题满分8分) 计算。24.(本题满分8分) 计算。25.(本题满分8分) 甲乙两人独立地向同一目标射击,甲乙两人击中目标的概率分别为0.8与0.5,两人各射击一次,求至少有一人击中目标的概率。26.(本题满分10分)求函数的单调区间和极值。27.(本题满分10分) (1)求由曲线所围成的平面图形(如图所示)的面积S; (2)求(1)中的平面图形绕轴旋转一周所得旋转体的体积。28.(本题满分10分)设函数是由方程所确定的隐函数,求.专心-专注-专业