《基于TL494开关电源设计(共42页).doc》由会员分享,可在线阅读,更多相关《基于TL494开关电源设计(共42页).doc(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上基于TL494的DC-DC开关电源设计摘 要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术及开关电源理论的发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。 开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多,
2、 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文采用双端驱动集成电路TL494输的PWM脉冲控制器设计小汽车中的音响供电电源,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。关键词:IGBT,PWM,推挽电路,半桥电路,单端正激 BASED ON THE DC-DC TL494 SWITCHING POWER SUPPLYABSTRACTWith the rapid development of electronic technology, electronic systems, more and more e
3、xtensive applications, the types of electronic equipment, more and more electronic equipment and people work and live closer and closer. In recent years, with the power electronic devices (such as IGBT, MOSFET), PWM switching power supply technology and development of the theory, a new generation of
4、 power began to gradually replace the traditional power supply circuits. The circuit is small, flexible to control the output characteristics of a good, ripple, load adjustment rate and so on.Switching power supply in the power adjustment control work in the off state, with low power consumption, hi
5、gh efficiency, wide voltage range, low temperature rise, and other outstanding advantages of small size, the communication equipment, CNC equipment, Instrumentation, video audio, home appliances so widely used in electronic circuits. High frequency converter switching power supply so many forms of c
6、ommonly used with push-pull converter, full bridge, half bridge, single-ended forward and the form of single-ended flyback. In this thesis, two-side driver IC - TL494 PWM pulse output of the controller design car audio power supply in use as a switch MOSFET, can improve the efficiency of the power t
7、ransformer, is conducive to impulse noise suppression, but also can reduce the size of the power transformer.KEY WORDS: IGBT,MOSFET,Push-pull circuit,Half bridge circuit, Single-ended forward专心-专注-专业目录前言电源是实现电能变换和功率传递的主要设备、在信息时代,农业、能源、交通运输、信息、国防教育等领域的迅猛发展,对电源产业提出了更多、更高的要求,如:节能、节电、节材、缩体、减重、环保、可靠、安全等。
8、这就迫使电源工作者在电源研发过程中不断探索,寻求各种相关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型电源设备,较之于传统的线性电源,其技术含量高,耗能低,使用方便,并取得了较好的经济效益。随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率
9、,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。由于小汽车音响受到12V供电的制约,无论输出功率还是音场效果都难以进一步提高。在此情况下,从上世纪末,欧洲生产的汽车音响中开始采用DC-DC变换器,将12V蓄电池供电变换为24V-50V,向汽车音响提供电源。目前,DC-DC变
10、换器与机械变流器相比,已今非昔比,其开关频率可达100KHZ以上,效率接近90%。 第1章 开关电源基础技术1.1 开关电源概述1.1.1 开关电源的工作原理开关电源的工作原理可以用图1-1进行说明。图中输入的直流不稳定电压Ui经开关S加至输出端,S为受控开关,是一个受开关脉冲控制的开关调整管。使开关S按要求改变导通或断开时间,就能把输入的直流电压Ui变成矩形脉冲电压。这个脉冲电压经滤波电路进行平滑滤波就可得到稳定的直流输出电压U0。图1-1 开关电源的工作原理 (a)为原理性电路图,(b)为波形图为方便分析开关电路,定义脉冲占空比如下: (1-1)式中T表示开关S的开关重复周期;TON表示开
11、关S在一个开关周期中的导通时间1。开关电源直流输出电压U0与输入电压Ui之间有如下关系: (1-2)由(1-2)式可以看出,若开关周期T一定,改变开关S的导通时间TON,即可改变脉冲占空比D,达到调节输出电压的目的。T不变,只改变TON来实现占空比调节的方式叫做脉冲宽度调制(PWM)。由于PWM式的开关频率固定,输出滤波电路比较容易设计,易实现最优化,所以PWM式开关电源用得较多。若保持TON不变,利用改变开关频率f=1/T实现脉冲占空比调节,从而实现输出直流电压U0稳压的方法,称做脉冲频率调制(PFM)方式开关电源。由于开关频率不固定,所以输出滤波电路的设计不易实现最优化。既改变TON,又改
12、变T,实现脉冲占空比的调节的稳压方式称做脉冲调频调宽方式。在各种开关电源中,以上三种脉冲占空比调节方式均有应用。1.1.2 开关电源的组成开关电源由以下四个基本环节组成,见图1-2所示。其中DC/DC变换器用以进行功率变换,是开关电源的核心部分;驱动器是开关信号的放大部分,对来自信号源的开关信号放大,整形,以适应开关管的驱动要求;信号源产生控制信号,由它激或自激电路产生,可以是PWM信号,也可以是PFM信号或其它信号;比较放大器对给定信号和输出反馈信号进行比较运算,控制开关信号的幅值,频率,波形等,通过驱动器控制开关器件的占空比,达到稳定输出电压值的目的。除此之外,开关电源还有辅助电路,包括启
13、动电路、过流过压保护、输入滤波、输出采样、功能指示等。DC/DC变换器有多种电路形式,其中控制波形为方波的PWM变换器以及工作波形为准正弦波的谐振变换器应用较为普遍。开关电源与线性电源相比,输入的瞬态变换比较多地表现在输出端,在提高开关频率的同时,由于反馈放大器的频率特性得到改善,开关电源的瞬态响应指标也能得到改善。负载变换瞬态响应主要由输出端LC滤波器的特性决定。所以可以通过提高开关频率、降低输出滤波器LC的方法改善瞬态响应特性2。图1-2 电源基本组成框图1.1.3 开关电源的特点(1)效率高:开关电源的功率开关调整管工作在开关状态,所以调整管的功耗小,效率高,一般在80%90%,高的可达
14、90%以上。(2)重量轻:由于开关电源省掉了笨重的电源变压器,节省了大量的漆包线和硅钢片,电源的重量只有同容量线性电源的1/5,体积也大大缩小。(3)稳压范围宽:开关电源的交流输入电压在90270V范围变化时,输出电压的变化在2%以下。合理设计电路,还可使稳压范围更宽,并保证开关电源的高效率。(4)可靠安全:在开关电源中,由于可以方便的设置各种形式的保护电路,所以当电源负载出现故障时,能自动切断电源,保护功能可靠。(5)功耗小:由于功率开关管工作在开关状态,损耗小,不需要采用大面积散热器,电源温升低,周围元件不致因长期工作在高温环境而损坏,所以采用开关电源可以提高整机的可靠性和稳定性3。1.2
15、 开关电源的分类1.按电路的输出稳压控制方式,开关电源可分为脉冲宽度调制(PWM)式、脉冲频率调制(PFM)式和脉冲调频调宽式三种。2.按开关电源的触发方式分类 自激式开关电源,自激式开关电源利用电源电路中的开关晶体管和高频脉冲变压器构成正反馈环路,来完成自激振荡,使开关电源输出直流电压。在显示设备的PWM式开关电源中,自激振荡频率同步于行频脉冲,即使在行扫描电路发生故障时,电源电路仍能维持自激振荡而有直流输出电压。它激式开关电源,它激式开关电源必须有一个振荡器,用以产生开关脉冲来控制开关管,使开关电源工作,输出直流电压。 1.3 电源电路组成电源电路一般由主开关电源、副电源、辅助电路等组成。
16、1.主开关电源主开关电源的输出功率较副电源、行输出级二次电源的输出功率要大。它将输入220V交流输入直接整流、滤波为300V左右的直流电压,再经过开关稳压调整环节中的开关调整管、开关变压器、稳压控制电路、激励脉冲产生电路对300V左右的直流电压进行DC-DC开关变换,产生各种所需的稳定直流电压输出。主开关电源主要为主负载电路提供110145V的直流电压。遥控待机功能是通过对主开关电源的控制实现的,主开关电源一旦停止工作,则相应的功率放大级也将停止工作,于是主负载失去了直流供电。 2.副电源副电源的主要作用是为微处理器控制电路提供5V的供电电压,副电源电路一般较简单,既可采用简易开关电源也可以采
17、用传统的线性稳压电路,无论负载处于正常工作状态还是待机状态,副电源都必须正常工作。3.辅助电路 将行输出变压器中产生的行扫描脉冲进行整流与滤波,就可以得到各种所需的直流电压。由于它是由行输出级经直流-交流-直流的两次变换,所以又称为二次电源。行输出级产生的各种直流电压主要给显像管各电极供电,同时也可以为视频输出板尾板、场扫描,图像和伴音通道供电。 1.4开关电源典型结构1.4.1串联开关电源结构串联开关电源工作原理的方框图如图1-3所示。功率开关晶体管VT串联在输入与输出之间。正常工作时,功率开关晶体管VT在开关驱动控制脉冲的作用下周期性地在导通、截止之间交替转换,使输入与输出之间周期性的闭合
18、与断开。输入不稳定的直流电压通过功率开关晶体管VT后输出为周期性脉冲电压,再经滤波后,就可得到平滑直流输出电压U0。U0和功率开关晶体管VT的脉冲占空比D有关,见式(12)。 图1-3 串联开关电源原理图输入交流电压或负载电流的变化,会引起输出直流电压的变化,通过输出取样电路将取样电压与基准电压相比较,误差电压通过误差放大器放大,控制脉冲调宽电路的脉冲占空比D,达到稳定直流输出电压U0的目的。1.4.2并联开关电源结构并联开关电源工作原理方框图如图1-4所示,功率开关晶体管VT与输入电压、输出负载并联,输出电压为: (1-3)图1-4为一种输出升压型开关电源,电路中有一个储能电感,适当利用这个
19、储能电感,可将并联开关电源转变为广泛使用的变压器耦合并联开关电源。图1-4 并联开关电源原理图变压器耦合并联开关电源工作框图如图1-5所示。功率开关晶体管VT与开关变压器初级线圈相串联接在电源供电输入端,功率开关晶体管VT在开关脉冲信号的控制下,周期性地导通与截止,集电极输出的脉冲电压通过变压器耦合在次级得到脉冲电压,这个脉冲电压经整流滤波后得到直流输出电压U0。同样经过取样电路将取样电压与基准电压UE进行比较被误差放大器放大,由误差放大器输出至功率开关晶体管VT,通过控制功率开关晶体管VT的导通、截止达到控制脉冲占空比的目的,从而稳定直流输出电压。由于采用变压器耦合,所以变压器的初、次级侧可
20、以相互隔离,从而使初级侧电路地与次级侧电路地分开,做到次级侧电路地不带电,使用安全。同时由于变压器耦合,可以使用多组次级线圈,在次级得到多组直流输出电压。 图1-5 变压器耦合并联开关电源原理图 1.5 电力场效应晶体管MOSFET随着信息电子技术与电力电子技术在发展的基础上相结合,形成了高频化、全控型、采用集成电路制造工艺的电力电子器件,其典型代表就是。1.电力场效应晶体管特点电力场效应晶体管简称电力Power MOSFET。 特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高, 热稳定性好。但是电流容量小,耐压低,一般适用于功率不超过10kW的电源电子装
21、置。2.MOSFET的结构和工作原理电力MOSFET的种类按导电沟道可分为P沟道和N沟道,图1-6所示为N沟道结构。电力MOSFET的工作原理是:在截止状态,漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结反偏,漏源极之间无电流流过。在导电状态,即当UGS大于开启电压或阈值电压UT时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结消失,漏极和源极导电。(a) 内部结构断面示意图 (b)电气图形符号图1-6 电力MOSFET的结构和电气图形符号MOSFET开关时间在10100ns之间,工作频率可达100kHz以上,是电
22、力电子器件中最高的。由于是场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。1.6 开关电源的技术指标1.输出电压调整率 当设计制作开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合要求。 通常当调整输出电压时,将输入交流电压设定为正常值,并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器直到电压读值位于要求的范围内。 2.电源调整率电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最
23、恶劣之电源电压环境下,如高温条件下,当用电需求量最大时,其电源电压最低;又如低温条件下,用电需求量最小,其电源电压最高。在前述之两个极端下验证电源供应器之输出电源的稳定度是否合乎需求的规格。 3.测量电压调整率 能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围。均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V、A、W、PF。 测试步骤如下:将待测电源设备以正常输入电压及负载状况下热机稳定后,分别在低输入电压Vomin,正常输入电压Vonormal,及高输入电压Vomax下测量并记录其输出电压值。 电源调整率通常以一额定负载下,由输入电压变化所造成其
24、输出电压偏差率的百分比,如下列公式所示: (1-4)电压调整率也可用表示为,在输入电压变化下,其输出电压偏差量须在规定之上下限范围内,即输出电压上下限绝对值以内。 4.负载调整率负载调整率的定义为开关电源的输出负载电流变化时,提供其稳定输出电压的能力。此项测试系用来验证电源在最恶劣负载环境下,如在负载断开,用电需求量最小,其负载电流最低的条件下,以及在负载最多,用电需求量最大,其负载电流最高的两个极端下验证电源的输出电源稳定度是否合乎需求的规格。 所需的设备和连接与电源调整率相似,唯一不同的是需要精密的电流表与待测电源供应器的输出串联。测试步骤如下:将待测电源供应器以正常输入电压及负载状况下热
25、机稳定后,测量正常负载下之输出电压值,再分别在轻载、重载负载下,测量并记录其输出电压值,负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比表示。当输出负载电流变化时,其输出电压之偏差量须在规定之上下限电压范围内,即输出电压之上下限绝对值以内。 5.综合调整率综合调整率的定义为电源供应器在输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试是上述电源调整率与负载调整率的综合,可提供对电源供应器於改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:当输入电压与输出负载电流变化时,其输出电压的偏差量须在规
26、定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 6.输出噪声 输出噪声(PARD)是指在输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出噪声是表示在经过稳压及滤波后的直流输出电压含有不需要的交流和噪声部份,包含低频50/60Hz电源倍频信号、高于20 KHz高频切换信号及其谐波,再与其他随机性信号所组成等,通常以mVp-p峰对峰值电压为单位来表示。一般的开关电源的指标以输出直流电压的1%以内为输出噪声规格,其频宽为20Hz到20MHz,或其它更高的频率如100MHz等。开关电源实际工作时最恶劣的状况如输出负载电流最大、输入
27、电源电压最低等,要求电源设备在恶劣环境状况下,其输出直流电压加上干扰信号后的输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限。否则将可能会导致电源电压超过或低于逻辑电路如TTL电路所承受电源电压而误动作,进一步造成死机现象。 例如5V输出电源,其输出噪声要求为50mV以内。此时包含电源调整率、负载调整率、动态负载等其他所有变动,其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作。在测量输出噪声时,电子负载的PARD必须比待测的电源供应器的PARD值为低,才不会影响输出噪声测量。同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振
28、铃和驻波,一般都采用在双同轴电缆的端点并以50电阻,并使用差动式量测方法以避免地回路噪声电流 第2章 开关变换电路由开关电源结构可知,开关稳压器无论何种形式,自激或它激实际上都是由开关电路和稳压控制电路两大系统组成。常见的电源变换电路可以分为单端和双端电路两大类。单端电路包括正激和反激两类;双端电路包括全桥、半桥和推挽三类。每一类电路都可能有多种不同的拓扑形式或控制方法。单端开关电路受开关器件最大动作电流的限制以及变换效率的影响,其输出功率一般在200W左右。若需要大功率电源,必须采用新的电路结构。推挽式、半桥式、桥式开关电路可以输出较大功率,成为开关电源的主要电路形式。2.1 推挽开关变换电
29、路2.1.1 推挽开关变换基本电路图2-1为推挽式开关电路的示意图。脉冲变压器TC初、次级都有两组对称的绕组,其相位关系如图所示,开关管用开关S代替。如果使S1、S2交替导通,通过变压器将能量传到次级电路,使V1、V2轮流导通,向负载提供能量。由于S1、S2导通时脉冲变压器TC电流方向不同,形成的磁通方向相反,因此推挽电路与前述电路相比,提高了磁心的利用率。磁心在四个象限内的磁化曲线都被利用,在一定输出功率时,磁心的有效截面积可以小于同功率的单端开关电路。此外当驱动脉冲频率恒定时,纹波率也相对较小。图2-1 推挽式开关电路推挽式开关电路中,能量转换由两管交替控制,当输出相同功率时,电流仅是单端
30、开关电源管的一半,因此开关损耗随之减小,效率提高。如果用同规格的开关管组成单端变换电路,输出最大功率为150W。若使用2只同规格开关管组成推挽电路,输出功率可以达到400500W。所以输出功率200W以上的开关电源均宜采用推挽电路。当滤波电感L电流连续时,输出电压表达式为: (2-1)图2-1所示的对称推挽电路有其缺憾之处。一是开关管承受反压较高。当开关管截止时,电源电压和脉冲变压器初级二分之一的感应电压相串联,加到开关管集电极和发射极,因而要求开关管VECO2VCC。二是推挽电路相当于单端开关电路的对称组合,只有当开关管特性、脉冲变压器初、次级绕组均完全对称,脉冲变压器磁心的磁化曲线在直角坐
31、标第、象限内所包括的面积,才和第、象限曲线内面积相等,正负磁通相抵消。否则磁感应强度+B和-B的差值形成剩余磁通量,使一个开关管磁化电流增大,同时次级V1、V2加到负载上的输出电压也不相等,从而增大纹波,推挽电路的优势尽失。因此,这种推挽电路目前仅用于自激或它激式低压输入的稳压变换器中。因为低压供电,N1、N2匝数少,且两绕组间电压差也小,一般采用双线并绕的方式来保证其对称性5。2.1.2 自激推挽式变换器1.饱和式推挽变换器自激推挽式直流脉冲变换器分有两类,即饱和式推挽变换器和非饱和式变换器。图2-2为饱和式推挽自激变换器的基本电路。所谓饱和式,是指脉冲变压器工作在磁化曲线的饱和状态。电路通
32、电以后,电流经电阻R1到正反馈绕组N3N4的中点,同时向VT1、VT2基极提供启动偏置。由于VT2的基极电路附加了R2,因此IB2、IC2小于IC1、IB1。启动状态,IC1IC2的结果,使脉冲变压器中形成的磁通N1N2,合成总磁通量为N1-N2,使VT1的导通电流起主导作用。因此,N1在各绕组中产生感应电势,正反馈绕组N3的感应电势形成对VT1的正反馈,使VT1集电极电流迅速增大。IC1的增大使N1激磁电流增大,磁场强度(H)的增加,使磁感应强度(B)磁化曲线增大,当到达磁心饱和点时,即使磁化电流再增大,也无法再使磁感应强度增大,即磁通量的变化为零。磁通量饱和的结果,使其无变量,各绕组感应电
33、压为零,VT1的正反馈消失,集电极电流IC1IB1*,并迅速减小。此过程中,正反馈绕组感应电压反向,使VT2导通,且IC2迅速增大,VT1截止。此过程中,由于磁心的饱和周而复始地进行,VT1、VT2轮流导通,初始电流方向随之不断改变,因而在次级感应出双向矩形脉冲。因此推挽变换器次级可以通过全波或桥式整流向负载供电。图2-2饱和式推挽变换器基本电路饱和型推挽变换器中,开关管VT1、VT2必须选择较大的ICM。因为当磁通量开始饱和时,脉冲变压器等效电感也开始减小,磁通量完全饱和时等效电感为零,开关管集电极电流剧增。在Ic剧增至IcIB*时,Ic才开始减小。一般饱和型变换器只用在低压变换器中,即使如
34、此也必须严格设计脉冲变压器饱和点的激磁电流,不能大于开关管最大允许电流。这种变换器的优点是频率比较稳定,其翻转过程只取决于脉冲变压器和负载电流。2.非饱和式变换器从电路结构上看,非饱和型推挽变换器与饱和型推挽变换器没有根本区别,只是正反馈量的选择量不同而已。同样是图2-2的电路,如果合理选择N1或N2与N3、N4的匝数比,使正反馈过程中开关管在Ic增大到接近自身的饱和区时,出现ICIB*的关系,使两管的导通/截止关系翻转,则成为非饱和型推挽变换器。非饱和指的是,在VT1、VT2的翻转过程中,脉冲变压器的磁通量始终处于与磁化电流的线性关系范围内,通过正反馈量的选择,使IB最大值时开关管进入饱和区
35、。此类推挽变换器常被用于高压变换器中。为了限制正反馈量使IB增大的比例,在VT2的基极电路中加入限流电阻R2(见图2-2所示),以尽量使ICIB*的关系在开关管允许条件内使电路翻转。上述推挽式自激变换器有不少优点,但是也有缺陷。首先是自激推挽式开关电路的驱动脉冲是双向的。在图2-2中,当VT1导通期,N3的感应脉冲是以正脉冲形式加到VT1基极,此时VT2处于截止状态,N4的感应脉冲以负脉冲形式加到VT2基极。当开关管或脉冲变压器进入饱和状态时,首先是正反馈脉冲减小,随IB*Ic而使正反馈脉冲反向。由于双极型开关管有少数载流子的存储效应,IB的减小,甚至IB=0时,其IC不会立即截止,而正反馈脉
36、冲的反向却可以使另一只开关管立即导通,因此,在VT1、VT2交替过程中必然出现两管同时瞬间导通。因两管集电极电流通过脉冲变压器形成反向磁场,而使脉冲变压器等效电感量减小,开关管电流增大。正因为如此,这种变换器的工作频率一般只在2000Hz左右,以减小两管交替导通过程中造成的共态导通损耗。这是推挽变换器应用于高压开关电源所必须解决的第一个问题6。3.驱动脉冲的波形所有用于高压开关电路的开关管绝对都只采用NPN型,这点是由半导体器件工艺所决定的。现有PNP型管的VCEO最大也极少超过300V,因此高压变换器也只能采用全NPN型开关管。其中关系可以由图5-2看出。当VT1导通时,VT2为截止状态,其
37、集电极电压为N2的感应脉冲和电源电压之和,即2Vcc。如果用于输入整流供电的高压变换器,VT1、VT2最高集电极和发射极之间电压将是600V以上,达到此要求的只有NPN型开关管。两管均为NPN管的结果是,其导通时驱动脉冲均为正向脉冲,如像自激式变换器相同的双向脉冲。为了避免截止状态反相驱动脉冲击穿开关管的BE结,必须在驱动电路增加必要的保护措施,否则即使不击穿BE结,也会使开关管处于深度截止状态,要想使其进入导通状态,势必增加正向驱动电流,因而使驱动功率增大,变换器效率降低。以上两个问题不仅使自激式推挽电路效率降低,同时也不适宜作高压输入的变换器。很明显,自激推挽式开关电源只能组成无稳压功能的
38、变换器,而不能用于开关电源,因为要同步控制两管的通断占空比,电路必然较复杂,且难以达到完全对称地控制。此类变换器一般采用在输出端设置耗能式稳压的方式。截止到目前为止,推挽式、桥式变换器都采用它激电路,以便于在驱动脉冲输出之前进行PWM控制7。饱和式变换器是利用输出脉冲变压器的磁饱和现象使开关管由导通变为截止,使推挽电路的两只开关管轮流通断。脉冲变压器为了转换输出功率,铁心的截面积必然较大,而要达到磁通量的饱和所需磁化电流也较大,使开关管损耗增大。因此在饱和式变换器的设计中,都尽量选择开关管的工作状态在脉冲变压器的磁化曲线开始进入饱和状态之初,首先让开关管进入饱和区,使开关电路翻转,以减小开关管
39、在变压器磁通饱和以后的大电流增长,降低开关管损耗。但是无论是设计还是调试,要保持这两者的严密关系是十分困难的。所以此类变换器常采用双变压器的电路形式。上述饱和式变换器中,脉冲变压器TC有双重功能,一是通过正反馈绕组使开关管以自激振荡的形式完成开关动作,进行DC-AC的变换。为了使开关动作持续地、两管交替地进行,脉冲变压器工作在磁饱和状态;二是将DC-AC转换后的双向矩形波通过设计的圈数比耦合到次级,通过整流、滤波成为直流电。双变压器饱和式变换器中,则将上述两种功能分别采用驱动变压器和输出变压器来完成。输出变压器只转换输出功率,驱动变压器则工作于饱和状态,控制开关管的通/断。因为驱动变压器只提供
40、推挽开关的驱动电流,其功率极小,可以采用较小的磁心截面积,因而其饱和的磁化电流大幅度减小,只要求驱动变压器磁性材料为矩形磁化曲线的、高磁通密度的。而输出变压器可以采用一般磁心,使成本大幅降低。2.2 半桥变换电路半桥式电路顾名思义就是取掉桥式电路中的两只开关管,半桥变换器电路如图2-3所示。图2-3 半桥电路原理图电路的工作过程:VT1与VT2交替导通,使变压器一次侧形成幅值为Ui/2的交流电压。改变开关的占空比,就可以改变二次侧整流电压Ud的平均值,也就改变了输出电压U0。VT1导通时,二极管V1处于通态,VT2导通时,二极管V2处于通态,当两个开关都关断时,变压器绕组N1中的电流为零,V1
41、和V2都处于通态,各分担一半的电流。VT1或VT2导通时电感L的电流逐渐上升,两个开关都关断时,电感L的电流逐渐下降。VT1和VT2断态时承受的最高电压为Ui。由于电容的隔离作用,半桥电路对由于两个开关导通时间不对称而造成的变压器一次侧电压的直流分量有自动平衡作用,因此不容易发生变压器的偏磁和直流磁饱和8。当滤波电感L的电流连续时,输出电压的计算公式为: (2-2) 半桥式开关电路省去两只开关管,采用连接电容分压方式,使开关管c-e极电压与桥式电路相同,同时驱动电路也大为简化,只需两组在时间轴上不重合的驱动脉冲,两组驱动电路的参考点为各自开关管的发射极,显然比桥式电路的形式简单得多。根据上述原
42、理,当采用相同规格开关管时,半桥式负载端电压为1/2Uin,输出功率为桥式电路的1/4。半桥式电路具有全桥式电路的所有优势,因此其应用比全桥式更普遍。2.3 正激变换电路 正激电路原理图如图2-4所示。图2-4 正激电路原理图电路的工作过程如下:开关管VT开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负。因此V1处于通态,V2为断态,电感L的电流逐渐增长;VT关断后,电感L通过V2续流,V1关断。VT关断后变压器的激磁电流经N3绕组和V3流回电源,所以开关管VT关断后承受的电压表达式为: (2-3)此时要考虑变压器磁心复位问题。开关管VT开通后,变压器的激磁
43、电流由零始,随着时间增加而线性的增长直到VT关断。为防止变压器的激磁电感饱和,需要设法使激磁电流在VT关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位9。 变压器的磁心复位时间为: (2-4)在电感电流连续的情况下,输出电压表示为: (2-5)输出电感电流不连续时,输出电压U0将高于式(2-3)的计算值,并随负载减小而升高,在负载为零的极限情况下,输出电压表达式为: (2-6)2.4 DC/DC升压模块设计从低压直流到高压交流的转换必定要设计升压方案。在电源设计的过程中,从不同角度考虑了多种升压方案。由升压环节所处位置的不同,主要考虑了前置升压和后置升压两种方法。所谓前置升
44、压,就是将升压环节放在逆变环节之前,先对输入的12V低压直流电进行DC-DC转换,升至所需较高直流电压,将此高压直流作为后续逆变电路的输入,对此高压直流电进行逆变,经过滤波后直接得到所需要的高压正弦交流电。所谓后置升压,就是将升压环节放在逆变、滤波环节之后,即先对热电发电器输入的12V低压直流电进行逆变、滤波,得到的是低压正弦交流电,然后对该信号进行交流升压得到所需的正弦交流电输出。首先分析后置升压,升压环节输入为滤波器输出的低压交流正弦波,交流升压通常采用的方法为线圈升压或压电变压器升压。由于系统要求输出的频率为20Hz到5KHz的宽频输出,因此如果采用线圈升压,属于低频升压,升压线圈体积将
45、会比较庞大,并且设计也较复杂,使得电源设计失去应用价值。而采用压电升压器也无法实现,因为压电变压器仅在谐振频率附近能够实现较好的升压效果,而且对于不同的压电升压器,随着其形状、大小等不同,其谐振频率会有较大差异,而在其他频率的升压效果很不理想。另外压电升压器的输出电压随负载的变化波动较大,难以实现精确控制。因此后置升压方案不可行。前置升压实际上是直流DC/DC升压,也就是将升压环节放在整个电源系统的最前端,首先通过直流变换器实现直流升压,然后再逆变、滤波。直流变换器按输入与输出间是否有电气隔离分为两类:没有电气隔离的称为不隔离直流变换器;有电气隔离的称为隔离直流变换器。其中不隔离直流变换器主要
46、是采用升压式(Boost)直流变换电路。其电路原理图如图2-5所示:图2-5 BOOST升压电路原理图整个电路由功率开关管VT、储能电感L、二极管V及滤波电容C组成。当电路不工作时,功率晶体管VT处于截止状态,二极管V导通,前端直流电源通过电感和二极管向电容充电,并且向负载提供自身电压的直流电。当整个电路处于工作状态时,外界对晶体管VT的控制端(栅极)加载周期性方波,晶体管VT便处于导通与截止的不断交替状态。当VT导通时,前端直流电源向电感L储能,电感电流增加,感应电动势为左正右负,负载由电容C供电;当VT截止时,电感电流减小,感应电动势为左负右正,电感中能量释放,与输入电压顺极性叠加经二极管V向负载供电,并同时向电容充电。功率管的高频开关使得电感发生强大的电磁感应,从而产生高压,经电容稳压输出成高压直流。其输出电压平均值将超过前端直流电压。Boost DC/DC变换器的输出电压值与晶体开关管栅极控制方波的占空比成反比,调节方波占空比便可以实现调压。图2-6所示为正激型开关电源的主回路。电路由功率开关管VT、变压器TC,二极管V1,V2, V3和电容C组成。其中,变压器线圈绕组由N1,N2,N3组成。电路的工作原理为:当功率开关管VT导通时,变压器两端绕组的电压均为上