高中物理模块六动量与动量守恒定律考点2.3动量守恒定律应用之类碰撞模型问题试题(共26页).doc

上传人:飞****2 文档编号:14220624 上传时间:2022-05-03 格式:DOC 页数:26 大小:468KB
返回 下载 相关 举报
高中物理模块六动量与动量守恒定律考点2.3动量守恒定律应用之类碰撞模型问题试题(共26页).doc_第1页
第1页 / 共26页
高中物理模块六动量与动量守恒定律考点2.3动量守恒定律应用之类碰撞模型问题试题(共26页).doc_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《高中物理模块六动量与动量守恒定律考点2.3动量守恒定律应用之类碰撞模型问题试题(共26页).doc》由会员分享,可在线阅读,更多相关《高中物理模块六动量与动量守恒定律考点2.3动量守恒定律应用之类碰撞模型问题试题(共26页).doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上考点2.3 动量守恒定律应用之类碰撞模型问题考点2.2.1 类碰撞模型之“滑块+弹簧+滑块”1对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒2整个过程涉及到弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题3注意:弹簧压缩最短时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大例4两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示B与C碰撞后二者会粘在一起运动则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系

2、统中弹性势能的最大值是多少?【解析】(1)当A、B、C三者的速度相等时弹簧的弹性势能最大由A、B、C三者组成的系统动量守恒,(mAmB)v(mAmBmC)vABC,解得vABCm/s3 m/s.(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为vBC,则mBv(mBmC)vBC,vBCm/s2 m/s,设物块A、B、C速度相同时弹簧的弹性势能最大为Ep,根据能量守恒Ep(mBmC)vmAv2(mAmBmC)v(24)22J262J(224)32J12J.【答案】(1)3m/s(2)12J1. (多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左

3、端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时(AD)AA、B系统总动量仍然为mvBA的动量变为零CB的动量达到最大值DA、B的速度相等2. 如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中 ( BD )A. M的速度等于0时,弹簧的弹性势能最大B. M与N具有相同的速度时,两滑块动能之和最小C. M的速度为v0/2时,弹簧的长度最长D. M的速度为v0/2时,弹簧的长度最短3. 如图甲所示,一轻弹簧的两端与质

4、量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知( BC ) A. t1时刻弹簧最短,t3时刻弹簧最长B. 从t1时刻到t2时刻弹簧由伸长状态恢复到原长C. 两木块的质量之比为m1:m2=1:2D. 在t2时刻两木块动能之比为EK1:EK2=1:44. 质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则( C )A. 甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒B. 当两

5、物块相距最近时,物块甲的速率为零C. 当物块甲的速率为1 m/s时,物块乙的速率可能为2 m/s,也可能为0D. 物块甲的速率可能达到5 m/s5. 如图所示,质量M4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v010 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m1 kg,g取10 m/s2.求:(1) 弹簧被压缩到最短时木块A的速度大小;(2) 木块A压缩弹簧过程中弹簧的最大弹性势能.【答案】(

6、1)2 m/s(2)39 J6. 如图光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计)设A以速度v0朝B运动,压缩弹簧;当A、 B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动假设B和C碰撞过程时间极短求从A开始压缩弹簧直至与弹簧分离的过程中,(1) 整个系统损失的机械能;(2) 弹簧被压缩到最短时的弹性势能【答案】(i)mv(ii)mv7. 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为和.笔的弹跳过程分为三个阶段: 把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(图); 由静止释放,外壳竖直上升

7、至下端距桌面高度为时,与静止的内芯碰撞(图); 碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为处(图)。设内芯与外壳的撞击力远大于笔所受重力、不计摩擦与空气阻力,重力加速度为g。(1) 外壳与碰撞后瞬间的共同速度大小;(2) 从外壳离开桌面到碰撞前瞬间,弹簧做的功;(3) 从外壳下端离开桌面到上升至处,笔损失的机械能。【答案】(1) (2) (3) 8. 质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量

8、也为m时,它们恰能回到O点。若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达的最高点与O点的距离。 【答案】x0/2考点2.2.2 类碰撞模型之“滑块+木板”1把滑块、木板看作一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒2由于摩擦生热,把机械能转化为内能,系统机械能不守恒应由能量守恒求解问题3注意:滑块不滑离木板时最后二者有共同速度【例题】如图所示,在光滑的水平面上有一质量为M的长木板,以速度v0向右做匀速直线运动,将质量为m的小铁块轻轻放在木板上的A点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动由于小铁块和木板间有

9、摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为,问:(1)小铁块跟木板相对静止时,它们的共同速度多大?(2)它们相对静止时,小铁块与A点距离多远?(3)在全过程中有多少机械能转化为内能?【解析】(1)木板与小铁块组成的系统动量守恒以v0的方向为正方向,由动量守恒定律得,Mv0(Mm)v,则v.(2)由功能关系可得,摩擦力在相对位移上所做的功等于系统动能的减少量,mgx相Mv(Mm)v2.解得x相(3)由能量守恒定律可得,QMv(Mm)v2【答案】(1)(2) (3) 1. (多选)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦

10、因数为.初始时小物块停在箱子正中间,如图10所示现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止设碰撞都是弹性的,则整个过程中,系统损失的动能为(BD)A.mv2 B. v2 C.NmgL DNmgL2. 将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块(可视为质点)以水平初速度v0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。小铅块运动过程中所受的摩擦力始终不变,现将木板分成A和B两段,使B的长度和质量均为A的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v0由木块A的左端开始向右滑动,如图乙所示,则下列有关说法正确的是( C

11、)A. 小铅块恰能滑到木板B的右端,并与木板B保持相对静止B. 小铅块将从木板B的右端飞离木板C. 小铅块滑到木板B的右端前就与木板B保持相对静止D. 小铅块在木板B上滑行产生的热量等于在木板A上滑行产生热量的2倍3. 如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点现使滑块A从距小车的上表面高h1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出已知滑块A、B与小车C的动摩擦因数均为0.5,小车C与水平地面的摩擦忽略不计,取g10 m/s

12、2.求:(1) 滑块A与B碰撞后瞬间的共同速度的大小;(2) 小车C上表面的最短长度【答案】(1)2.5m/s;(2)0.375m4. 如图所示,在光滑的水平面上有一质量为M的长木板,以速度v0向右做匀速直线运动,将质量为m的小铁块轻轻放在木板上的A点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动由于小铁块和木板间有摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为,问:(1) 小铁块跟木板相对静止时,它们的共同速度多大?(2) 它们相对静止时,小铁块与A点距离多远?(3) 在全过程中有多少机械能转化为内能?【答案】(1)(2)(3)5. 如图所示,质量m1=0.3 kg 的小车静止

13、在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g=10 m/s2,求(1) 物块在车面上滑行的时间t;(2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v0不超过多少?【答案】(1)0.24s (2)5m/s6. 如图所示,质量mA为4.0 kg的木板A放在水平面C上,木板与水平面间的动摩擦因数为0.24,木板右端放着质量mB为1.0 kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12 Ns的瞬时冲量I作用开始运

14、动,当小物块滑离木板时,木板的动能EKA为8.0 J,小物块的动能EKB为0.50 J,重力加速度取10 m/s2,求:(1) 瞬时冲量作用结束时木板的速度v0;(2) 木板的长度L.【答案】(1)3.0 m/s (2)0.50 m7. 如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC相切,BC的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A点正上方某处无初速下落,恰好落入小车圆弧轨道滑动.,然后沿水平轨道滑行至轨道末端C处恰好没有滑出。已知物块到达圆弧轨道最低点B时对轨道的压力是物块重力的9倍,

15、小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求:(1) 物块开始下落的位置距水平轨道BC的竖直高度是圆弧半径的几倍.(2) 物块与水平轨道BC间的动摩擦因数.【答案】(1)4倍 (2)0.38. 如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切了,轨道固定在水平面上,一个质量为m的小物块(可视为质点)从轨道的A端以初动能E冲上水平轨道AB,沿着轨道运动,由DC弧滑下后停在水平轨道AB的中点.已知水平轨道AB长为L.求:(1) 小物块与水平轨道的动摩擦因数.(2) 为了保证小物块不从轨道的D端离开轨道,圆弧轨道

16、的半径R至少多大?(3) 若圆弧轨道的半径R取第(2)问计算出的最小值,增大小物块的初动能,使得小物块冲上轨道后可以达到最大高度1.5R处。试求小物块的初动能并分析小物块能否停在水平轨道上,如果能,将停在何处?如果不能,将以多大速度离开轨道?【答案】 (1)= (2)R= (3)小物块最终能停在水平滑道AB上,距A点L9. 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,物块的质量均为M=0.60kg。一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。已知物块A的长度为0.27m,A离开桌面

17、后,落地点到桌边的水平距离s=2.0m。设子弹在物块A、B 中穿行时受到的阻力保持不变,g取10m/s2。(1) 物块A和物块B离开桌面时速度的大小分别是多少;(2) 求子弹在物块B中穿行的距离;(3) 为了使子弹在物块B中穿行时物块B未离开桌面,求物块B到桌边的最小距离。【答案】(1)5m/s 10m/s (2)3.510-2m (3) 2.510-2m10. 如图所示,水平地面上静止放置一辆小车A,质量mA4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计可视为质点的物块B置于A的最右端,B的质量mB2 kg.现对A施加一个水平向右的恒力F10 N,A运动一段时间后,小车左端固定

18、的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t0.6 s,二者的速度达到vt2 m/s.求:(1) A开始运动时加速度a的大小;(2) A、B碰撞后瞬间的共同速度v的大小;(3) A的上表面长度l.【答案】(1)2.5 m/s2(2)1 m/s(3)0.45 m11. 如图所示,质量M3.5 kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L1.2 m,其左端放有一质量为0.5 kg的滑块Q.水平放置的轻弹簧左端固定,质量为1 kg的小物块P置于桌面上的A点并与弹簧的右端接触.此时弹簧处于原长,现用水平向左的推力将P缓慢推

19、至B点(弹簧仍在弹性限度内)时,推力做的功为WF6 J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5 m处.已知AB间距L15 cm,A点离桌子边沿C点距离L290 cm,P与桌面间的动摩擦因数10.4,P、Q与小车表面间的动摩擦因数20.1.(g10 m/s2)求:(1) P到达C点时的速度 vC的大小;(2) P与Q碰撞后瞬间Q的速度大小.【答案】(1)2 m/s(2)2 m/s12. 如图,有一固定长度的木板C放在光滑水平面上,木板上面放置可视为质点的木块A、B,A、B、C的质量均相等木块A、B相距0.2m,放在木板上适当的位置,它们与木板间的动

20、摩擦因数相同均为=0.2,两物块均在同一直线上,开始时都处于静止状态某时刻同时使物体A、B分别以速度v01=3m/s、v02=1m/s向相反方向运动,g取10m/s2,如图所示问:(1) 在A、B同时运动的过程中,木板C的运动状态应该怎样?请说明理由(2) 若要使A、B最终不滑离木板,木板C的长度至少为多少?【答案】(1)模板C静止 (2)2.37mCv01v02AB13. 如图所示,质量为mA=2kg的木板A静止在光滑水平面上,一质量为mB=1kg的小物块B以某一初速度v0从A的左端向右运动,当A向右运动的路程为L=0.5m时,B的速度为vB=4m/s,此时A的右端与固定竖直挡板相距x。已知

21、木板A足够长(保证B始终不从A上掉下来),A与挡板碰撞无机械能损失,A、B之间的动摩擦因数为=0.2,g取10m/s2(1) 求B的初速度值v0;(2) 当x满足什么条件时,A与竖直挡板只能发生一次碰撞?【答案】(1)6m/s (2) x0.625m14. 有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示.(1) 已知小滑块质量为m,碰撞时间为t,求碰撞过程中A对B平均冲力的大小;(2) 为了研究物体从光滑抛物线轨道顶端无初速度下滑的运动,特制做一个与B平抛轨迹完全相同的光滑轨道,并将该轨道固定在与

22、OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道).分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;在OD曲线上有一点M,O和M两点连线与竖直方向的夹角为45,求A通过M点时的水平分速度和竖直分速度。【答案】(1) (2) pA1).断开轻绳,棒和环自由下落。假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失。棒在整个运动过程中始终保持竖直,空气阻力不计。求:(1) 棒第一次与地面碰撞弹起上升过程中,环的加速度;(2) 从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程S;(3) 从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W。【

23、答案】(1)(k-1)g,方向竖直向上 (2) (3) 8.9. 如图所示,半径为R的光滑圆形轨道固定在竖直面内,小球A、B质量分别为m、m(为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为R,碰撞中无机械能损失。重力加速度为g,试求:(1) 待定系数;(2) 第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3) 小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。【答案】(1)=3 (2) 向左; 向右 ; 方向竖直向下(3) 当n为奇数时,小球A、

24、B第n次碰撞结束时的速度分别与其第一次碰撞刚结束时相同.当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.10.11.12. 如图所示,一块足够长的木块,放在光滑的水平面上,在木板上自左向右放有序号是1,2,3,n的木块,所有木块的质量均为m,与木板间的动摩擦因数都相同。开始时,木板静止不动,第1,2,3,n号木板的初速度分别是v0,2v0,3v0,nv0,方向都向右。木板的质量与所有木块的总质量相等。最终所有木块与木块以共同速度匀速运动。设木块之间均无相互碰撞,木板足够长。求:(1) 所有木块与木板一起匀速运动的速度vn ;(2) 第1号木块与木板刚好相对静止时的速度v1;(3) 通过分析与计算说明第k号(n k)木块的最小速度vk。【答案】(1) (2) (3) 其中n k专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁