《2016年山东省高考数学试卷-理科-解析(共21页).doc》由会员分享,可在线阅读,更多相关《2016年山东省高考数学试卷-理科-解析(共21页).doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1(5分)(2016山东)若复数z满足2z+=32i,其中i为虚数单位,则z=()A1+2iB12iC1+2iD12i2(5分)(2016山东)设集合A=y|y=2x,xR,B=x|x210,则AB=()A(1,1)B(0,1)C(1,+)D(0,+)3(5分)(2016山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,2
2、2.5),22.5,25),25,27.5),27.5,30根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A56B60C120D1404(5分)(2016山东)若变量x,y满足,则x2+y2的最大值是()A4B9C10D125(5分)(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示则该几何体的体积为()A+B+C+D1+6(5分)(2016山东)已知直线a,b分别在两个不同的平面,内则“直线a和直线b相交”是“平面和平面相交”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7(5分)(2016山东)函数f(x)=(sinx+cos
3、x)(cosxsinx)的最小正周期是()ABCD28(5分)(2016山东)已知非零向量,满足4|=3|,cos,=若(t+),则实数t的值为()A4B4CD9(5分)(2016山东)已知函数f(x)的定义域为R当x0时,f(x)=x31;当1x1时,f(x)=f(x);当x时,f(x+)=f(x)则f(6)=()A2B1C0D210(5分)(2016山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质下列函数中具有T性质的是()Ay=sinxBy=lnxCy=exDy=x3二、填空题:本大题共5小题,每小题5分,共25分.11(5分)
4、(2016山东)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为12(5分)(2016山东)若(ax2+)5的展开式中x5的系数是80,则实数a=13(5分)(2016山东)已知双曲线E:=1(a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是14(5分)(2016山东)在1,1上随机地取一个数k,则事件“直线y=kx与圆(x5)2+y2=9相交”发生的概率为15(5分)(2016山东)已知函数f(x)=,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是三、解答题,:本大
5、题共6小题,共75分.16(12分)(2016山东)在ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+()证明:a+b=2c;()求cosC的最小值17(12分)(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线(I)已知G,H分别为EC,FB的中点,求证:GH平面ABC;()已知EF=FB=AC=2,AB=BC,求二面角FBCA的余弦值18(12分)(2016山东)已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前n项和Tn1
6、9(12分)(2016山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响各轮结果亦互不影响假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX20(13分)(2016山东)已知f(x)=a(xlnx)+,aR(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)f(x)+对于任意的x1,2成立21(14
7、分)(2016山东)平面直角坐标系xOy中,椭圆C:+=1(ab0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点(I)求椭圆C的方程;()设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2,求的最大值及取得最大值时点P的坐标2016年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1(5分)(2016山东)若
8、复数z满足2z+=32i,其中i为虚数单位,则z=()A1+2iB12iC1+2iD12i【考点】复数代数形式的乘除运算菁优网版权所有【专题】计算题;规律型;转化思想;数系的扩充和复数【分析】设出复数z,通过复数方程求解即可【解答】解:复数z满足2z+=32i,设z=a+bi,可得:2a+2bi+abi=32i解得a=1,b=2z=12i故选:B【点评】本题考查复数的代数形式混合运算,考查计算能力2(5分)(2016山东)设集合A=y|y=2x,xR,B=x|x210,则AB=()A(1,1)B(0,1)C(1,+)D(0,+)【考点】并集及其运算菁优网版权所有【专题】计算题;集合思想;数学模
9、型法;集合【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案【解答】解:A=y|y=2x,xR=(0,+),B=x|x210=(1,1),AB=(0,+)(1,1)=(1,+)故选:C【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题3(5分)(2016山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30根据直方图,这200名学生中每周的自习时间不少于22.
10、5小时的人数是()A56B60C120D140【考点】频率分布直方图菁优网版权所有【专题】计算题;图表型;概率与统计【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)2.5=0.7,故自习时间不少于22.5小时的频率为:0.7200=140,故选:D【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目4(5分)(2016山东)若变量x,y满足,则x2+y2的最大值是()A4B9C10D12【考点】简单线性规划菁优网版权所有【专题】计算题
11、;对应思想;数形结合法;不等式【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值【解答】解:由约束条件作出可行域如图,A(0,3),C(0,2),|OA|OC|,联立,解得B(3,1),x2+y2的最大值是10故选:C【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题5(5分)(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示则该几何体的体积为()A+B+C+D1+【考点】由三视图求面积、体积菁优网版权所有【专题】计算题;空间位置关系与距离;立体几何【分析】由已知中的三视图可得:
12、该几何体上部是一个半球,下部是一个四棱锥,进而可得答案【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=故R=,故半球的体积为:=,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+,故选:C【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键6(5分)(2016山东)已知直线a,b分别在两个不同的平面,内则“直线a和直线b相交”是“平面和平面相交”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【考点】必要条件、充分条
13、件与充要条件的判断菁优网版权所有【专题】探究型;空间位置关系与距离;简易逻辑【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案【解答】解:当“直线a和直线b相交”时,“平面和平面相交”成立,当“平面和平面相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面和平面相交”的充分不必要条件,故选:A【点评】本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题7(5分)(2016山东)函数f(x)=(sinx+cosx)(cosxsinx)的最小正周期是()ABCD2【考点】三角函数中的恒等变换应用;三角函数的周期性及其
14、求法菁优网版权所有【专题】计算题;转化思想;转化法;三角函数的图像与性质【分析】利用和差角及二倍角公式,化简函数的解析式,进而可得函数的周期【解答】解:数f(x)=(sinx+cosx)(cosxsinx)=2sin(x+)2cos(x+)=2sin(2x+),T=,故选:B【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档8(5分)(2016山东)已知非零向量,满足4|=3|,cos,=若(t+),则实数t的值为()A4B4CD【考点】平面向量数量积的运算菁优网版权所有【专题】计算题;转化思想;平面向量及应用【分析】若(t+),则(t+)=0,进而可得实数t的值【解答】解
15、:4|=3|,cos,=,(t+),(t+)=t+2=t|+|2=()|2=0,解得:t=4,故选:B【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题9(5分)(2016山东)已知函数f(x)的定义域为R当x0时,f(x)=x31;当1x1时,f(x)=f(x);当x时,f(x+)=f(x)则f(6)=()A2B1C0D2【考点】抽象函数及其应用菁优网版权所有【专题】综合题;转化思想;综合法;函数的性质及应用【分析】求得函数的周期为1,再利用当1x1时,f(x)=f(x),得到f(1)=f(1),当x0时,f(x)=x31,得到f(1)=2,即可得出结论
16、【解答】解:当x时,f(x+)=f(x),当x时,f(x+1)=f(x),即周期为1f(6)=f(1),当1x1时,f(x)=f(x),f(1)=f(1),当x0时,f(x)=x31,f(1)=2,f(1)=f(1)=2,f(6)=2故选:D【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题10(5分)(2016山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质下列函数中具有T性质的是()Ay=sinxBy=lnxCy=exDy=x3【考点】利用导数研究曲线上某点切线方程菁优网版权所有【专题】转化思想;转化法
17、;函数的性质及应用;导数的概念及应用【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为1,进而可得答案【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为1,当y=sinx时,y=cosx,满足条件;当y=lnx时,y=0恒成立,不满足条件;当y=ex时,y=ex0恒成立,不满足条件;当y=x3时,y=3x20恒成立,不满足条件;故选:A【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度
18、中档二、填空题:本大题共5小题,每小题5分,共25分.11(5分)(2016山东)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3【考点】程序框图菁优网版权所有【专题】计算题;操作型;算法和程序框图【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案【解答】解:输入的a,b的值分别为0和9,i=1第一次执行循环体后:a=1,b=8,不满足条件ab,故i=2;第二次执行循环体后:a=3,b=6,不满足条件ab,故i=3;第三次执行循环体后:a=6,b=3,满足条件ab,故输出的i值为:3,故答案为:3【点评】本题考查的
19、知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答12(5分)(2016山东)若(ax2+)5的展开式中x5的系数是80,则实数a=2【考点】二项式系数的性质菁优网版权所有【专题】二项式定理【分析】利用二项展开式的通项公式Tr+1=(ax2)5r,化简可得求的x5的系数【解答】解:(ax2+)5的展开式的通项公式Tr+1=(ax2)5r=a5r,令10=5,解得r=2(ax2+)5的展开式中x5的系数是80a3=80,得a=2【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型13(5分)(2016山东)已知双曲线E:=1(a0,b0),若矩形ABCD的四
20、个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2【考点】双曲线的简单性质菁优网版权所有【专题】方程思想;分析法;圆锥曲线的定义、性质与方程【分析】可令x=c,代入双曲线的方程,求得y=,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值【解答】解:令x=c,代入双曲线的方程可得y=b=,由题意可设A(c,),B(c,),C(c,),D(c,),由2|AB|=3|BC|,可得2=32c,即为2b2=3ac,由b2=c2a2,e=,可得2e23e2=0,解得e=2(负的舍去)故答案为:2【点评】
21、本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题14(5分)(2016山东)在1,1上随机地取一个数k,则事件“直线y=kx与圆(x5)2+y2=9相交”发生的概率为【考点】几何概型菁优网版权所有【专题】计算题;转化思想;综合法;概率与统计【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求【解答】解:圆(x5)2+y2=9的圆心为(5,0),半径为3圆心到直线y=kx的距离为,要使直线y=kx与圆(x5)2+y2=9相交,则3,解得k在区间1,1上随机取一个数k,使
22、直线y=kx与圆(x5)2+y2=9相交相交的概率为=故答案为:【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题15(5分)(2016山东)已知函数f(x)=,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+)【考点】根的存在性及根的个数判断菁优网版权所有【专题】转化思想;数形结合法;函数的性质及应用【分析】作出函数f(x)=的图象,依题意,可得4mm2m(m0),解之即可【解答】解:当m0时,函数f(x)=的图象如下:xm时,f(x)=x22mx+4m=(xm)2+4mm24mm2
23、,y要使得关于x的方程f(x)=b有三个不同的根,必须4mm2m(m0),即m23m(m0),解得m3,m的取值范围是(3,+),故答案为:(3,+)【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4mm2m是难点,属于中档题三、解答题,:本大题共6小题,共75分.16(12分)(2016山东)在ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+()证明:a+b=2c;()求cosC的最小值【考点】三角函数中的恒等变换应用;正弦定理;余弦定理菁优网版权所有【专题】计算题;证明题;综合法;解三角形【分析】()由切化弦公式,带入并整理可得2(
24、sinAcosB+cosAsinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;()根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c22ab,并由不等式a2+b22ab得出c2ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值【解答】解:()证明:由得:;两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定
25、理,;,带入(1)得:;a+b=2c;()a+b=2c;(a+b)2=a2+b2+2ab=4c2;a2+b2=4c22ab,且4c24ab,当且仅当a=b时取等号;又a,b0;由余弦定理,=;cosC的最小值为【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为,以及三角函数的诱导公式,正余弦定理,不等式a2+b22ab的应用,不等式的性质17(12分)(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线(I)已知G,H分别为EC,FB的中点,求证:GH平面ABC;()已知EF=FB=AC=2,AB=BC,求二面角FBCA的余弦值【考点
26、】二面角的平面角及求法;直线与平面平行的判定菁优网版权所有【专题】证明题;转化思想;向量法;空间位置关系与距离;空间角【分析】()取FC中点Q,连结GQ、QH,推导出平面GQH平面ABC,由此能证明GH平面ABC()由AB=BC,知BOAC,以O为原点,OA为x轴,OB为y轴,OO为z轴,建立空间直角坐标系,利用向量法能求出二面角FBCA的余弦值【解答】证明:()取FC中点Q,连结GQ、QH,G、H为EC、FB的中点,GQ,QH,又EFBO,GQBO,平面GQH平面ABC,GH面GQH,GH平面ABC解:()AB=BC,BOAC,又OO面ABC,以O为原点,OA为x轴,OB为y轴,OO为z轴,
27、建立空间直角坐标系,则A(,0,0),C(2,0,0),B(0,2,0),O(0,0,3),F(0,3),=(2,3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,1,),cos,=二面角FBCA的平面角是锐角,二面角FBCA的余弦值为【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用18(12分)(2016山东)已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前
28、n项和Tn【考点】数列的求和;数列递推式菁优网版权所有【专题】综合题;转化思想;综合法;等差数列与等比数列【分析】()求出数列an的通项公式,再求数列bn的通项公式;()求出数列cn的通项,利用错位相减法求数列cn的前n项和Tn【解答】解:()Sn=3n2+8n,n2时,an=SnSn1=6n+5,n=1时,a1=S1=11,an=6n+5;an=bn+bn+1,an1=bn1+bn,anan1=bn+1bn12d=6,d=3,a1=b1+b2,11=2b1+3,b1=4,bn=4+3(n1)=3n+1;()cn=6(n+1)2n,Tn=622+322+(n+1)2n,2Tn=6222+323
29、+n2n+(n+1)2n+1,可得Tn=622+22+23+2n(n+1)2n+1=12+66(n+1)2n+1=(6n)2n+1=3n2n+2,Tn=3n2n+2【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题19(12分)(2016山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响各轮结果亦互不影响假设“星队”参加两
30、轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列菁优网版权所有【专题】计算题;分类讨论;分类法;概率与统计【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2
31、个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=+=+=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)=,P(X=1)=2+=,P(X=2)=+=,P(X=3)=2=,P(X=4)=2+=P(X=6)=故X的分布列如下图所示: X 012 3 4 6 P数学期望EX=0+1+2+3+4+6=【点评】本题考查离散型随机变量的分布列和数学期望,属中档题20(13分)(2016山东)已知f(x)=a(xlnx)+,aR(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)f(x)+对于任意的x1,2成立【考点】利用导数求闭区间上函数的最值;
32、利用导数研究函数的单调性菁优网版权所有【专题】综合题;函数思想;综合法;导数的概念及应用【分析】()求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;()构造函数F(x)=f(x)f(x),令g(x)=xlnx,h(x)=则F(x)=f(x)f(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)恒成立由此可得f(x)f(x)+对于任意的x1,2成立【解答】()解:由f(x)=a(xlnx)+,得f(x)=a(1)+=(x0)若a0,则ax220恒成立,当x(0,1)时,f(x)0,f(x)为增函数,当x(1,+)时,f(x)0,f(
33、x)为减函数;当a0,若0a2,当x(0,1)和(,+)时,f(x)0,f(x)为增函数,当x(1,)时,f(x)0,f(x)为减函数;若a=2,f(x)0恒成立,f(x)在(0,+)上为增函数;若a2,当x(0,)和(1,+)时,f(x)0,f(x)为增函数,当x(,1)时,f(x)0,f(x)为减函数;()解:a=1,令F(x)=f(x)f(x)=xlnx1=xlnx+令g(x)=xlnx,h(x)=则F(x)=f(x)f(x)=g(x)+h(x),由,可得g(x)g(1)=1,当且仅当x=1时取等号;又,设(x)=3x22x+6,则(x)在1,2上单调递减,且(1)=1,(2)=10,在
34、1,2上存在x0,使得x(1,x0) 时(x0)0,x(x0,2)时,(x0)0,函数(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)h(2)=,当且仅当x=2取等号,f(x)f(x)=g(x)+h(x)g(1)+h(2)=,F(x)恒成立即f(x)f(x)+对于任意的x1,2成立【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题21(14分)(2016山东)平面直角坐标系xOy中,椭圆C:+=1(ab0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点(I)求
35、椭圆C的方程;()设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2,求的最大值及取得最大值时点P的坐标【考点】椭圆的简单性质菁优网版权所有【专题】方程思想;分析法;直线与圆;圆锥曲线的定义、性质与方程【分析】(I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c的关系,解得a,b,进而得到椭圆的方程;()(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D
36、的坐标,求得OD的方程,再令x=x0,可得y=进而得到定直线;(ii)由直线l的方程为y=x0xy0,令x=0,可得G(0,y0),运用三角形的面积公式,可得S1=|FG|x0|=x0(+y0),S2=|PM|x0|,化简整理,再1+2x02=t(t1),整理可得t的二次方程,进而得到最大值及此时P的坐标【解答】解:(I)由题意可得e=,抛物线E:x2=2y的焦点F为(0,),即有b=,a2c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;()(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y=x,即有切线的斜率为x0,则切线的方程为yy0=x0(xx0),可化
37、为y=x0xy0,代入椭圆方程,可得(1+4x02)x28x0y0x+4y021=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,),直线OD的方程为y=x,可令x=x0,可得y=即有点M在定直线y=上;(ii)直线l的方程为y=x0xy0,令x=0,可得G(0,y0),则S1=|FG|x0|=x0(+y0)=x0(1+x02);S2=|PM|x0|=(y0+)=x0,则=,令1+2x02=t(t1),则=2+=()2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,)【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题参与本试卷答题和审题的老师有:qiss;sxs123;翔宇老师;于东;双曲线;wfy814;wkl;zlzhan(排名不分先后)菁优网2016年6月13日专心-专注-专业