《奥数:方阵问题(共12页).docx》由会员分享,可在线阅读,更多相关《奥数:方阵问题(共12页).docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上教学内容:第十一讲方阵问题在日常生活中,我们经常见到把人或物排成正方形的形状,比如用花盆摆成正方形,同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,在数学上我们通常把研究这样的问题称为方阵问题。掌握这类问题的解题规律,可以提高我们的解题能力,培养思维的灵活性。今天我们将共同研究和分析这类问题。 士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,恰好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。在摆放的方阵中如果是实心的,我们叫它中实方
2、阵;如果这个方阵是空心的,我们叫它中空方阵。 观察中实方阵,我们不难发现方阵的基本特点: 方阵的每行物体个数与每列物体个数相等。 去掉横竖各一排时,有且只有1个物体是同时属于被减去的一行和一列。 如果把最外圈形成的正方形叫第一层,再向里一圈叫第二层的话,会发现相邻的这两个正方形每边个数相差为2,相邻两层相差总个数为8。 每边人(或物)数和四周人(或物)数的关系 四周人(或物)数=每边人(或物)数-14 每边人(或物)数=四周人(或物)数4+1 中实方阵的总人数(或物)=每边人(或物)数每边人(或物)数 观察中空方阵,我们不难发现方阵的基本特点: 中空方阵的总人(或物)数=(最外层每边人(或物)
3、数-中空方阵的层数)中空方阵的层数4 下面我们就利用以上特点进例1 参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列,如果去掉一行一列,请问:要去掉多少名学生?还剩下多少名学生? 分析与解答:如上图表示的是一个4行4列的实心正方形队列,从图中可以看出正方形队列的特点: (1)正方形队列每行、每列的人数相等,因此总人数=每行人数每列人数。 (2)去掉横竖各一排时,有且只有1人是同时属于被减去的一行和一列的,如图中点A所示。因此去掉的总人数=原每行人数2-1,或去掉的总人数=减少后每行人数2+1。 本题中所求,即去掉的人数=72-1=13(人) 或去掉的人数=(7-1)2+1=13(
4、人) 还剩的人数=(7-1)(7-1)=36(人) 或还剩的人数=77-13=49-13=36(人) 答:如果去掉一行一列,要去掉13名学生,还剩下36名学生。 例2 小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少? 分析与解答:如图,最外一层每边摆6枚,根据方阵每行每列个数相等特点,因此一共有66=36枚棋子。 最外一层每边有6枚,如果用64=24枚,就认为是最外一层棋子数的答案的话,那就错了。因为正方形每个顶点上的棋子分属于一行一列,这样棋子在计算总数时就被多数了一次,这样的顶点一共有4个,需要把多数的减去,才能
5、得到正确的结果。列式是64-4=20枚。说明:这道题还可以这样想:数每边棋子时,可以按上图先划分成4个相等的块,这样每边就有5枚了,因此用54=20枚,也可以得到正确答案。按照划分块的方法不同,至少还有两种方法,请同学们试一试。 例3 有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人? 分析与解答:要想求出方阵中一共有多少士兵,就应先求出方阵的最外层每边有多少人。已知方阵最外一层有100人,用1004=25人,每边是不是25人呢?不是的,因为平均分成4份后,还需要再加上1,才正好是每边上的人数,列式应该为1004+1=26人。因此方阵中一共有2626=676人。 答
6、:一共有676人。 说明:这道题关键是求出每边人数。在求每边人数时,不要认为和“知道了正方形周长,求边长”一样,还必须要加上1。 例4 若干名同学排成中实方阵则多12人,若要将这个方阵改摆成纵横两个方向各增加1人的方阵则还差9人排满,请问:原有学生多少人? 分析与解:由于纵横两个方向各增加1人,因此不但将剩余12人摆上,而且还差9人,说明一横行与一竖行的人数总和是12+9=21人。 又由于纵横两个方向各增加1人,因此只有1人同属于横行与纵行,在数每边上的人数时,总被多数一次,因此可以用21人先加上被重复数过的1人,再除以2,也就得到每边人数。列式为(21+1)2=11人。求出每边人数,就可求出
7、假设排满后的人数,列式为1111=121人,用121人减去差的9人就是原来人数,列式为121-9=112人。也可以根据原来的方阵再加上12,请你试一试。 答:原有学生112人。 前四个例题涉及的都是实心方阵问题。下面我们来研究中空方阵问题。例5 游行队伍中,手持鲜花的少先队员在一辆彩车的四周围成每边三层的方阵,最外边一层每边12人,请问:彩车周围的少先队员共有多少人? 分析与解答1:请同学们自己画一个图,下图是一个三层中空方阵的示意图,不难发现,有如下特点: (1)外层每边点的个数都比相邻内层的每边点的个数多2; (2)每相邻两层之间,点的总数相差8个。 最外层队员的总数:124-4=44(人
8、) 三层共有队员的总数:44+(44-8)+(44-82) =44+36+28=108(人) 分析与解答2:如下图可分成相等的四部分,每一部分的人数: (12-3)3=93=27(人) 三层共有队员数:274=108(人)答:彩车周围的少先队员共有108人。 这个问题还有别的解法,请同学们自己试着做一下。 例6 小明用围棋子摆了一个五层中空方阵,一共用了200枚棋子,请问:最外边一层每边有多少枚棋子? 分析与解答1:利用“相邻两层之间,每层的总数相差8”的特点,可知最外层共有棋子数: (200+8+82+83+84)5=56(个) 最外层每边的棋子数:564+1=15(个) 分析与解答2:如例
9、5的图,把棋子分成相等的四部分。 每一部分的棋子数:2004=50(个) 每一部分每排的棋子数:505=10(个) 最外层每边的棋子数:10+5=15(个) 综合列式为:20045+5=15(个) 答:最外边一层每边有15枚棋子。 阅读材料 牛顿是英国一位伟大的数学家和科学家,他是个早产儿,从小就体弱多病,不能像同年龄的孩子在外面跑跑跳跳。只能躲在室内。不过,聪明的他却有一套玩耍的方法;他制造了一种利用老鼠磨面粉的机械玩具水车,把小麦磨成雪白的面粉,还做了有灯光的风筝吓唬村民。牛顿最有名的一段小故事,就是因为苹果落下,而发现万有引力,为什么苹果会落下?小朋友你想过这个问题吗?这是因为地心引力,
10、所以有重量,苹果才落下。喔牛顿很喜欢想问题,也喜欢看书,最后成为伟大的科学家和数学家哩练习题 1.实验小学四年级原准备排成一个正方形队列参加广播操表演,由于服装不够,只好横竖各减少一排,这样共需去掉27人,请问:四年级原来准备多少人参加表演? 分析与解答:此题刚好是例1的逆向思考问题。根据正方形队列的特点,可知原每行人数=(去掉一行一列的人数+1)2 即:原来每行人数:(27+1)2=14(人) 原来准备参加表演的人数:1414=196(人) 答:四年级原准备196人参加表演。 2.一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人? 分析与解答1:把去掉4行4列转化为一行一列的
11、去掉,就可用例6的结论: 去掉一行一列的总人数=原每行人数2-1 反复利用4次这个公式,只要注意“原每行人数”的变化,即可列式为: 去掉4行4列的总人数=202-1+(20-1)2-1+(20-2)2-1+(20-3)2-1 =40-1=38-1+36-1+34-1 =144(人) 分析与解答2:我们还可以这样想:原来是一个7行7列的方阵,若去掉4行4列后,仍剩下一个小正方形方阵,因此去掉4行4列的总人数=原正方形方阵每边人数-4,即去掉的总人数=2020-(20-4)(20-4) =400-256 =144(人) 答:去掉4行4列,要减少144人。 3.正方形舞厅四周均匀的装彩灯,如果四个角
12、都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏? 分析与解1:自己画图可以看出,角上的四盏灯各属于两行,所以彩灯总数应为: 124-4=44(盏) 分析与解2:还可以把彩灯分成相等的四部分,因此彩灯总数为:(12-1)4=44(盏) 答:这个舞厅四周共装彩灯44盏。 4.“六一”儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵,请你求出最外面一层每边有鲜花多少盆? 分析与解答:分析思路参见例6,最外层每边人数=总数4层数+层数 20443+3=20(盆) 答:最外面一层每边有鲜花20盆 5.四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方
13、阵最外层每边的人数是多少?这个方阵共有多少人? 分析:根据四周人数与每边人数的关系可知: 每边人数=四周人数4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求出来了。 解答:(1)方阵最外层每边的人数:204+1=5+1=6(人) (2)整个方阵共有学生人数:66=36(人) 答:方阵最外层每边的人数是6人,这个方阵共有36人。 6.明明用围棋子摆成一个三层中空方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少枚棋子?摆这个三层空心方阵共用了多少枚棋子? 分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每
14、边的个数,就可以求出最里层一周放棋子的总数。 (2)根据最外层每边放棋子的个数减去这个中空方阵的层数,再乘以层数,再乘以4,计算出这个中空方阵共用棋子多少个。 解答:(1)最里层一周棋子的个数是:(15-2-2-1)4=40(个)(2)这个空心方阵共用的棋子数是:(15-3)34=144(个) 答:这个方阵最里层一周有40个棋子;摆这个中空方阵共用144个棋子。 7.若干战士排成一个四层中空方阵,只知道最外一层每边有12人,请你求出总人数。 分析与解:我们可以采用先求出每层人数再求总人数的方法进行 解答:由于最外层每边有12人,因此最外层一共有(12-1)4=44人,又根据方阵相邻两层,外层比
15、内层人数多8的特点,因此第二层有44-8=36人,第三层有36-8=28人,第四层有28-8=20人。因此一共有44+36+28+20=128人。 还可以这样想,把四层中空方阵划分如例5的形状,我们发现每个长方形可以看成四排战士,每排有8人组成。因此一个长方形有84=32人,一共有4个长方形,324=128人。 当然还可以先把中空方阵看成中实方阵,然后再减去补上的小中实方阵人数,也可以求出一共有多少人,看成中实方阵后,最外一层每边12人,因此一共有1212=144人。又因为在方阵中相邻两个正方形每边人数相差2,因此第二层每边有12-2=10人,第三层每边有10-2=8人,第四层每边有8-2=6
16、人,第五层每边有6-2=4人。因此小的中实方阵有44=16人。144-6=128人就表示一共有战士的人数。 答:一共有128人。 8.有若干盆鲜花摆成一个中空方阵,最外层共摆48盆,最内层共摆24盆,请问:共摆了多少盆鲜花? 分析与解答:由于方阵中相邻两个正方形每边相差8,因此第二层应摆鲜花48-8=40盆,第三层有花40-8=32盆,第四层有花32-8=24盆。这样通过枚举方法求出一共有四层花,及中间两层花的总数。因此一共摆了48+40+32+24=144盆。 答:一共摆了144盆。 9.五年级学生分成两队参加学校广播操比赛,他们排成甲、乙两个中实方阵,其中甲方阵每边的人数等于8,如果把两队
17、合并,可以另排成一个中空的丙方阵,丙方阵每边的人数比乙方阵每边的人数多4人,甲方阵的人数正好填满丙方阵的空心,请问:五年级参加广播操比赛的一共有多少名学生? 分析:若只排列一个乙方阵,则多余的人数为(即甲方阵的人数)88=64(人),排列一个实心的丙方阵,不足的人数是:88=64(人)。假设丙方阵为实心方阵,则乙多的人数是:88+88=128(人),又根据方阵扩展一层,每边增加2人,丙方阵丙实心方阵比乙方阵的外边多4人,说明丙方阵多于乙方阵的层数是42=2(层),方阵扩展2层,需要增加128人,根据“和差问题”则方阵最外层的人数是:(128+24)2=68(人),所以丙方阵的总人数1818-8
18、8=260(人)解:(1)假设丙方阵为中实方阵,则丙方阵最外层是:(88+88+24)2=68(人) (2)丙方阵最外层每边的人数是:684+1=18(人) (3)中空丙方阵的总人数:1818-88=324-64=260(人) 答:五年级参加广播操比赛的一共有260人。 10.有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵? 分析:根据已知条件柳树和杨树的种法有如下两种,假设黑点表示杨树,白点表示柳树观察图(1)(2)不管是柳树种在方阵最外层的角上还是杨树种在方阵最外层的角上,方阵中除最里边一层外其它层杨树和柳树都是相同的
19、。因而杨树和柳树的棵数相等。即最外层杨,柳树分别为(7-1)42=12(棵)。 当柳树种在方阵最外层的角上时,最内层的一棵是柳树;当杨树种在方阵最外层的角上时,最内层的一棵是杨树,即在方阵中,杨树和柳树总数相差1棵。 解答:(1)最外层杨柳树的棵数分别为:(7-1)42=12(棵) (2)当杨树种在最外层角上时,杨树比柳树多1棵: 杨树:(77+1)2=25(棵) 柳树:77-25=24(棵) (3)当柳树种在最外层角上时,柳树比杨树多1树 柳树(77+1)2=25(棵) 杨树77-25=24(棵) 答:在两种方法中,方阵最外层都有杨树12棵,柳树12棵,方阵中总共有杨树25棵,柳树24棵,或者有杨树24棵,柳树25棵。专心-专注-专业