《2022年数学北师大版九级下册切线长定理.pdf》由会员分享,可在线阅读,更多相关《2022年数学北师大版九级下册切线长定理.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章圆切线长定理教学目标是:1. 使学生理解切线长定义 . 2. 使学生掌握切线长定理,并能初步运用. 3. 通过本节教学,进一步培养学生的动手操作能力和创新意识. 4. 学生在猜想、探索、验证切线长定理活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力. 5. 通过分析问题、 解决问题的过程,激发学生学数学的兴趣,使学生积极参与、体验成功 . 三、教学设计分析本节课设计了六个教学环节:一、创设情景,引入新课二、合作学习,探究新知三、应用新知,体验成功四、梳理小结,盘点收获五、延伸思考,提升层次六、推荐作业,巩固拓展. 第一环节创设情景,引入新课活动内容 :问题: 有一
2、天 , 同学们去王老师家做客 , 王老师正在洗锅 , 就问: 谁能测出这个锅盖的半径 , 就可以得到一根雪糕 , 同学们都跃跃欲试 , 但老师家里只有一个曲尺,到底谁能得到这根雪糕呢? 这里让学生们小组讨论 , 那么, 该如何测量这个锅盖的半径呢?学生们众说纷纭, 可能会利用90的圆周角所对的弦是直径来作答, 也有可能会利用曲尺的两边与圆构造正方形来解答, 哪一种方法更好呢 ? 教师引导学生发现A、B分别为 O与 PA 、PB的切点,连结 OB,OA, A B O P A B O P C D 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - -
3、 - - - - - - - -第 1 页,共 12 页 - - - - - - - - - - 则四边形 OBAP 是正方形 , 所以,圆的半径为A点或 B点的刻度, PA=PB. 如果这根尺子的夹角不是90,是否还能得到PA=PB ?活动目的 : 课标指出:“对数学的认识,应处处着眼于数学与人的发展和现实生活之间的密切联系” 根据这一理念和九年级学生的年龄特点、心理发展规律,联系生活中喜闻乐见的话题,创设有一定挑战性的问题情景,目的在于激发学生的探索激情和求知欲望,把学生的注意力较快地集中到本课的学习中. 教师通过对话交往, 引导学生把对概念的感性认识上升到理性认识,然后在图形中进行识别,
4、从而认识概念的本质特征,理解概念的外延.第二环节合作学习,探究新知(一) 、切线长定义1、板书定义:从圆外一点可以引圆的两条切线,这一点和切点之间线段的长度叫做圆的切线长2、剖析定义:(1)找出中心词,把定义进行缩句.(线段的长叫做切线长)(2)定义中的“线段”具有什么特征? 在圆的切线上;两个端点一个是切点,一个是圆外已知点. 3、在图形中辨别:(1)已知:如图 1,PC 和O 相切于点 A ,点 P到O 的切线长可以用哪一条线段的长来表示?(线段 PA)图1PAOBOAP图2(2)已知:如图 2,PA 和 PB 分别与 O 相切于点 A、B ,点 P 到O 的切线长可以用哪一条线段的长来表
5、示?(线段PA 或线段 PB)(3)如图 2,思考:点 P 到O 的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?(4)既然点 P到O 的切线长可以用两条不同的线段的长来表示,那么这两条线段之间一定存在着某种关系, 是什么关系呢?我们来探索一下,出示探索问题1,从而进入定理教学 . (二) 、切线长定理:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 12 页 - - - - - - - - - - 1、探索问题 1:从O外一点 P引O的两条切线,切点分别
6、为A、B,那么线段 PA和 PB之间有何关系?探索步骤:(1)根据条件画出图形;(2)度量线段 PA和 PB的长度;(3)猜想:线段 PA和 PB之间的关系;(4)寻找证明猜想的途径;(5)在图 3 中还能得出哪些结论?并把它们归类. (6)上述各结论中,你想把哪个结论作为切线长的性质?请说明理由 . 活动目的:定理教学的方式是学生自主探索,相互交流相结合 . 首先出示探索步骤的前三个,等学生猜想出结论后,再明确仅凭观察、度量、利用圆的对称性,通过折叠,猜想并不能说明结论的正确性,还需证明结论的正确性,同时激励学生寻找证明猜想的途径. 之后,再让学生探索更多的结论,并由(6)得出定理. 定理的
7、剖析以对话形式进行. 在整个过程中,教师相应地进行板书. 此环节让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性, 感受证明的必要性,证明过程的严谨性以及结论的确定性.然后,通过动态演示强化切线长定理这一核心知识. 可以看出设置探究性的问题,可以树立学生已知与未知、 简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知转化为已知,把复杂问题化为简单问题, 把一般问题转化为特殊问题的思考方法 . 本环节教师通过学生探究、学生讲解、学生总结、归纳总结得出本节课的核心知识“切线长定理”,
8、又通过动态演示强化核心知识. 最后通过习题、生活中的实例让学生应用核心知识,树立学生的应用意识. 这样多图3OPBA精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 12 页 - - - - - - - - - - 种形式、多种角度强化核心知识,更易学生接受. 3、剖析定理:(1)指出定理的题设和结论;(2)用符号语言表示定理:PA 、PB 分别是 O 的切线,点 A、B分别为切点,(PA 、PB 分别与 O 相切于点A、B)PA=PB ,APO= BPO. (3) 切线和切线长区别 . 切线是
9、到圆心距离等于圆的半径的直线,而切线长是线段,指过圆外一点做圆的切线,该点到切点的距离. 活动目的:此处通过学生思考得出结论,再次加深学生对概念的理解,也使学生了解切线长与切线的关系,4. 拓展:(1)图3是轴对称图形吗?如图 4,连结图3中的两个切点 AB 交OP 于点C ,OP所在的直线交 O 于点 D 、E,又能得出什么结论?并把它们分类. (2)如图5,已知 O 的两条切线互相平行, A、B 两点为切点,如果连接两切点 AB ,则AB 是O 的直径吗?数学来源于生活,又应用于生活,请同学们再思考下,它们在我们的日常生活中各有什么应用?答:图 3是轴对称图形,连接 AB ,结论 PAB
10、是一个等腰三角形,并且存在等腰三角形的三线合一定理. AB OP ,出现了圆的垂径定理 . ,ADBD AEBEAB是O 的直径 . 我们的日常生活中 , 球放在墙角, V 形架中放入一个圆球等. 如图7 可以应用于解决日常生活中测量球体的直径. 图4OPEDCBAO图5EBFA精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 12 页 - - - - - - - - - - 图7FEDCBAO(4) 如图8中,作出三角形三条切线后与三角形各边都相切的圆叫做三角形的内切圆,图 8中存在切线长定理
11、吗? . 图8OOO(5)老师有一张三角形的铁皮,如何在它的上面截下一块圆形的用料,并且使圆的面积尽可能最大?答:只要作出这个三角形的内切圆便是这个三角形中取出的用料. 活动目的:此环节让学生指出切线长定理的题设和结论,并让学生熟练掌握定理的三种几何语言(符号语言、文字语言、图形语言)的表示. 学生在总结出切线长定理的同时,又通过观察图形发现了圆心和这一点的连线为圆的对称轴,利用对称性还可得到更多的边等、角等、弧等的结论. 接着让学生观察三角形的内切圆从而发现其中也存在切线长定理. 问题的引入自然流畅,层层递进不仅符合学生认知规律, 也激发了学生进一步研究的兴趣,达成本节课知识目标的教学. 最
12、后,通过在三角形铁皮上裁下一个最大的圆的实际问题的探究,帮助学生从实际中发现数学问题, 运用所学知识解决实际问题, 提高他们数学的应用意识和解决问题的能力 . (三)圆的外切四边形的性质. 请同学们先在草稿本中作出有关已知圆O 的四条切线,再互相交流与讨论你的发现与结论并加以验证. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 12 页 - - - - - - - - - - 图9ODCBA结论:圆的外切四边形的两组对边的和相等. 活动目的:学生通过在图形中识别切线长定理的基本图形,总结的出
13、圆外切四边形的性质,学生再次应用本节核心知识发现新的结论. 这样教学,教师不只是让学生“见到树木,也看到了他们所在的森林”.第三环节应用新知,体验成功活动内容:(一)例题学习1.例题:已知如图, RtABC 的两条直角边 AC=10,BC=24,O 是ABC 的内切圆,切点分别为D,E,F,求 O 的半径 . 例题 1图AFBDEOC变式一: 由于切线长定理的运用是本节的难点,为了化解难点,在例题完成后,将例题加以变式训练,将RtABC变为一般 ABC. 即:课本 96 页知识技能第 2 题已知:如图 5,ABC 的内切圆 O 与 BC,CA,AB 分别相切于点D,E,F,且 AB=9cm,B
14、C=14cm,CA=13cm,求 AF,BD,CE 的长. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 12 页 - - - - - - - - - - 第2题OFEDCBA变式二:在变式一完成后,将变式一再加以变式训练,将切线AC 平移到圆的另一侧,即知识技能第1 题例 1、如图, P 是O 外一点, PA 与 PB 分别 O切于 A、B 两点,DE 也是O 的切线,切点为 C,PA=PB=5cm,求 PDE 的周长. 让学生分析问题后,提出问题:1、从图中可得出哪些结论?请说明理由.
15、2、求PDE的周长时,应如何利用已知条件?提出引导问题的目的让学生对所学的知识加以归纳,形成知识系统,问题2是解决本题的关键, 可以引导学生寻找思路, 请一学生板演完成此题, 并让学生进行题后小结 . 活动目的: 本环节利用由简入深的变式,充分发挥学生的主体地位,加深学生对本课内容的学习与了解, 加强数学思想的渗透力, 从而提高学生自主建构知识网络,分析、解决问题的能力,达到触类旁通!(二)巩固练习1.填空:如图 10,P A、PB 分别与 O 相切于点 A、B,(1)若 PB=12,PO=13,则 AO= (2)若 PO=10,AO=6,则 PB= ;(3)若 PA=4,AO=3,则 PO=
16、 ;PD= ;D图 10OPBA2.已知,如图 10,PA、PB 分别与 O 相切于点 A、B,PO 与O 相交于点 D,且O A B D C E P 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 12 页 - - - - - - - - - - P A=4cm,PD=2cm.求半径 OA 的长. 现在让我们回到锅盖的半径问题上,如何解决这个问题呢?3.为了测量一个圆形锅盖的半径,某同学采用了如下办法:将锅盖平放在水平桌面上,用一个锐角为30的三角板和一个刻度尺,按图中所示的方法得到相关数据
17、,进而可求得锅盖的半径,若测得PA=5cm,则锅盖的半径长是多少?(引导学生连结 OA、OB、OP,利用切线长定理解答)活动目的: 本环节加深了学生对知识的理解,让学生体验数学的严谨性,意在培养学生自主学习的习惯、 自主探索、 引导学生爱读书敢质疑、 能自主建构切线长,并利用切线长定理解答问题,对本节知识进行巩固练习.第四环节梳理小结,盘点收获活动内容:1、你的学习心得、体会是什么?2、你有哪些好的经验可推广?3、你还存在哪些困难、疑问?提醒学生注意由切线长可得到一个等腰三角形这一点和圆心的连线不但平分两切线的夹角, 还垂直平分两切点间的线段 让学生自由提问, 同时也可利用这个机会,辅导有困难
18、的学生,从而使每个学生都能达标. 活动目的: 为让学生形成知识网络, 完善认知结构, 小结时引导学生参与总结,在引导学生针对以上问题,反思自己学习过程. 第五环节延伸思考,提升层次活动内容:P A B O 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 12 页 - - - - - - - - - - 这节课我们所探索的有关切线长的知识是在给出圆的两条切线的情况下得出的,那么要是圆的三条切线两两相交,又会有什么样的结论呢?如果有四条切线呢?这些问题有待于我们课后去研究. 活动目的:把数学的学习
19、延伸到课外的探索和研究中去.第六环节推荐作业,巩固拓展活动内容:A 层:1.已知:如图 5,O 是ABC 的内切圆,切点分别为D、E、F,(1)图中共有几对相等线段?(2)若 AF=4,BD=6,CE=8,则 ABC 的周长是;(3)若AB=9,BC=15,AC=12,则 AF= ,BD= ,CE= . 第1题OFEDCBA第 2 题图2.如图, PA、PB 分别切 O 于 A、B 两点, C 是AB上任意一点,过C 作O的切线,交PA 及 PB 于 D、E 两点,已知 P=50, PA=PB=6cm ,则DOE= ,PDE 的周长是. B 层:1、如图,过 O 外一点作 O 的切线 PA、P
20、B,A、B 为切点, C 为AB上一点,设 APB=. 求证: ACB=2190. 分析:本题主要运用切线的性质和圆周角定理及四边形的内角和进行解答. A B P C O A B P D O E C 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 12 页 - - - - - - - - - - 2 如图,PA、PB切O于A、 B, PO交AB于E, 等式AE=BE;AO2=OE OP;OAB=21APB;PA=PB 中,成立的有()A.1 个B.2 个C.3 个D.4 个活动目的 : 分层作
21、业,使“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”四、教学设计反思1要创造性的使用教材“数学课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程. ”教师要引导学生主动参与数学活动,在有效的数学活动中体验、 感悟和理解数学知识的发生、发展和形成过程, 进而引发数学思考,构建数学模型,使数学课堂教学因活动而精彩. 同时,新课程和教学改革提出了 “用教材教而不是教教材” 的新理念, 这就要求教师在使用教材时要针对学生的学习情况对教材的处理有灵活性和自主性. 教材只是为了达到课程目标而使用的教学材料,并不是课程的全部. 教材的优点是标准、规范,但
22、这种规范往往会约束教师的创造性,导致老师照本宣科地“教”教材,从而影响了学生对知识的理解和掌握 . 这就涉及老师自己要能灵活地驾驭教材. 如何驾驭教材呢? 本人对切线长定理及切线的拓展稍作加工处理,将教材设置转化为三个活动情景,充分发挥学生的自主学习的主动性和探究性. 2相信学生并为学生提供充分展示自己的机会,让学生自主体BOAPE精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 12 页 - - - - - - - - - - 验,自我发展, 在学习过程中进一步体验到学习数学知识的方法、探索
23、知识形成过程乐趣和奥秘.本节课切线长定理的探索以三个学生动手操作作图的活动为平台,结合学生的自主探索和教师的启发式提问, 对所学有关切线性质的基础知识作简单的迁移,师生以一种平等民主的方式进行教与学的活动. 在对话中,师生互相补充,互相促进,最终达到师生在具体情境中共同进步与发展. 在这种活动情境中,学生乐于进行自我发现和反思,真正做到“吃一堑,长一智”. 教师在整个活动过程只是参与者、指导者、合作者、设计者,帮助学生从具体的作图中提炼有效图形,建立数学模型 . 在学生有困难的情况下,采用互助式合作学习,培养其协作精神. 另外通过层层递进的提问与活动,在具体情境中发展学生的发散思维及创新能力,
24、激发学习兴趣,使学生真正体验成功的快乐. 在本堂课中,我立足于学生已有的切线的性质与判定的知识和基本能力,通过设计三个学生活动操作情景,将切线的拓展与探究的问题抛给学生,全由学生自主实验,观察,猜测,发现,探究与验证. 在学生的自主探究、合作交流的过程中,有关切线的外延与内涵知识一点一点地被学生挖出来,让学生经历了观察,操作,猜想,探究,发现和验证过程,更为关键的是让学生参与、经历了这个知识的发生,发展,形成过程以及知识的建构过程. 这样的知识将永远存在学生的头脑中,更为可贵的是给了学生学习知识, 探究知识的思维方法与思维过程,让学生在学习过程中进一步体验到学习数学知识的方法、乐趣和奥秘. 随
25、着新课程改革的不断深入与发展,更需要教师不断更新教育理念,改变过去过于强调的接受性学习, 突出学生的主体地位, 重视数学知识的活动性、 探究性和创造性 . 这就要求教师能根据自己的需要,能灵活地驾驭教材、改造教材.在教法的选择上, 教师一定要从教学内容实际出发,从学生学情出发, 结合自己的教学实践恰当地使用教材和改造教材,只要学习内容适宜学生探究的, 就让学生自主探究 . 有效的数学学习活动不能单纯地依赖模仿与记忆. 动手实践、自主探索与合作交流是学生学习数学的重要方式. 教师通过精心设计数学问题,创设了一个具有挑战性、探索性的问题情境,让学生在探究中学习数学、体验数学、创精品资料 - - -
26、 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 12 页 - - - - - - - - - - 造数学、享受数学 . 在数学活动中伴随着思维活动, 把思维活动渗透到数学活动,充斥思维活动的课堂是凸显学生生命的课堂,是有生命力的课堂. 注重学生在学习过程中的自主体验,自我发展. 在作图活动中,尽量为学生提供“做中学”,让学生在数学实践中感知,给学生留出了充分的活动时间和想象空间,鼓励每位学生参与到动手、 动口、动脑的活动和实践中来 . 将操作发现、自主探索、 合作交流, 积极思考等学习方式贯穿到数学探究过程的始
27、终,体现了新课程倡导的自主、合作、探究的学习方式. 不放过任何一个发展学生智力的契机,让学生在“做”的过程中, 借助已有的知识、 方法和经历, 主动探索新知识,扩大认知结构,发展能力,从而使教学设计真正落实到学生的发展上. 3注重数学思想方法的渗透在习题设置中体现了把复杂问题转化为简单问题后解决问题,从而滲透转化思想和方程思想,提高应用意识. 4作业分层布置通过分层作业的设置使全体学生巩固基础,对于学有余力的学生可以通过类比的方法拓展提高加深对课上知识、数学思想、方法的巩固. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 12 页 - - - - - - - - - -