《收音机的电路原理及构成(共6页).doc》由会员分享,可在线阅读,更多相关《收音机的电路原理及构成(共6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上收音机的电路原理及构成摘要:超外差式收音机,是指输入信号和本机振荡信号产生一个固定中频信号的过程。如果把收音机收到的广播电台的高频信号,都变换为一个固定的中频载波频率(仅是载波频率发生改变,而其信号包络仍然和原高频信号包络一样),然后再对此固定的中频进行放大,检波,再加上低放级,就成了超外差式收音机。这种接收机中,在高频放大器和中频放大器之间须增加一级变换器,通常称为变频器,它的根本任务是把高频信号变换成固定中频。而由于中频频率(我国采用465千赫)较变换前的高频信号(广播电台的频率)低,而且频率是固定的,所以任何电台的信号都能得到相等的放大量。另外,中频的放大量容易
2、做得比较高,而不易产生自激,所以超外差式收音机可以做得灵敏度很高。由于外来电台必须经过“变频”变成中频频率才能通过中频放大回路,所以可以提高收音机的选择性。 关键词:电路原理、构成构造 正文:一、变频级 超外差式收音机的变频级包括混频器和本机振荡器两个部分。接收天线收到的高频调幅信号经调谐输入回路的选择,送入变频级的混频器。本机振荡器(由变频级本身产生一个等幅的高频信号)产生的高频等幅振荡电流也送入混频器。通常本机振荡的频率高于外来信号的频率,而且高出的数值要保持一定值,即中频频率。两种信号在混频器中混频的结果,产生一个新的频率信号,也就是混频器的根本功用是把输入信号的载波频率同本机振荡器的载
3、频频率进行差拍在其输出端得到一个“差频”信号,即“中频”信号。这就是“外差作用”。我国收音机中频频率规定为465千赫。465千赫的差频信号仍属高频范围,只是因为它比外来信号的载波频率低,才称为“中频”信号。外来的高频调幅信号,经过变频以后只是变了载波频率,要求原来信号的调制规律不能改变,仍然调制在新的中频信号,所以变频级输出的中频信号仍然是调幅信号。 变频电路是本实验套件的收音机线路中的变频电路。Lab是绕在磁性棒上的线圈,Lab、Ca、Cat组成了高频调谐回路,Lb、Cb、Cbt、C3组成本机振荡回路。磁性天线接收到的高频调幅信号,经高频调谐回路的选择,由耦合线圈Lcd加到变频管的基极和发射
4、极之间;本机振荡器产生的高频等幅信号(比外来信号频率高一个固定中频)通过C2、C1和R2也加到变频管的基极和发射极之间。我们知道半导体三极管的发射结(发射极和基极之间的P-N结)是非线性元件,所以当外来信号和本机振荡信号加在发射极-基极回路时发生混频,产生了我们需要的差频(465千赫)。我们再通过接在集电极回路中的L3组成的中频谐振回路(俗称中周),将被放大了的中频信号选取出来,由L3次级输出送至中频放大器。为了使本机振荡的频率和调谐回路的高频谐振频率之差始终为一固定中频(465千赫),在改变调谐回路的谐振频率时(选择所要收听的电台时),必须同时调整振荡回路的振荡频率,这叫“统调”。为了简化使
5、用时的调谐手续,在收音机中,上述两个回路是采用一只同轴双连可变电容(Ca、Cb)进行调整的。常用的双连可变电容是等容式的。例如有270PF2、365PF2等规格。使用等容双连可变电容时必须在本机振荡回路中的可变电容Cb上并联一个小电容Cbt,适当地选取Cbt,以便使两个回路得到较好的统调,C3是垫振电容用以补偿波段高低端的统调偏差。 电阻R1、R2组成偏置电路。L2是中波振荡线圈。L3是“中周”。 二、中频放大极 中频放大器是超外差式收音机的极其重要的组成部分,中放级的好坏对收音机的灵敏度、选择性和保真度等主要指标有决定性的影响。 收音机里的中频放大器其工作频率为465千赫,用谐振回路作负载,
6、这样可大大提高收音机的灵敏度和选择性。 经过变频级变换成465千赫的中频信号通过中频变压器L3耦合至Q2基极,经过Q2放大后由第二只中频变压器L4耦合到Q3进行第二次中频放大,Q3既是第二中放的放大管,又是检波级,经Q3放大后的中频信号利用Q3的be极的PN结的单向导电特性进行检波。 R3是第一中放管Q2的偏置电路,C4的任务之一是旁路中频信号;R4、R3、W1是第二中放管Q3的偏置电路。C5、C6是旁路电容,音频信号通过C7耦合到低放级。 各极中频放大器之间采用中频变压器进行耦合。由于三极管输出阻抗较低,考虑阻抗匹配,所以电源供给从中频变压器初级中心头接入。同时次级大多数是不调谐的且圈数很少
7、,以便与下一级所接的三极管输入阻抗小的特点相适应。 三、检波和自动增益控制 在超外差式收音机中,通常采用二极管检波器。收音机在接收强弱不同的电台信号的时候,音量往往相差很大。电台信号过强,甚至引起失真。装上自动增益控制后,就能避免出现这些现象。自动增益控制电路由R3、C4组成。检波后,音频信号的一部分,通过R3送回到第一中放管Q2的基极。由于C4的滤波作用,滤去了音频信号中的交流成分,保留了直流成分。实际上送回到Q2基极的是音频信号中的直流成分。当检波输出的音频信号增大的时候,Q3的IC3增大,Q3的集电极电位就降低,通过R3,就会使Q2的基极电位降低,Q2的集电极电流减小,Q2的放大倍数就会
8、下降,从而保持检波输出的音频信号大小基本不变,这样就达到了自动增益控制的目的。 四、功率放大电路 Q4是推动级,它的集电极电流较大,能输出一定的音频功率,推动末级功率放大工作。输入变压器L5起阻抗匹配和倒相的作用,它输出大小相等、相位相反的信号推动三极管Q5、Q6做乙类推挽功率放大。 Q5、Q6串联成无输出变压器(OTL)推挽功率放大电路。R7、R8、R9、R10是偏置电阻,使Q5、Q6在没信号输入时,也有一定的集电极电流,用来消除交越失真。由L5次级提供的倒相信号使Q5和Q6交替导通,在Q6的集电极上输出放大了的完整的信号,通过隔直电容C9耦合到扬声器上。 五、超外差式六管收音机整机电路分析
9、 磁性天线感应来的信号送到谐振回路Lab、Ca中去(参见图2线路标注),将Lab、Ca调谐在接收的信号频率上,其它干扰信号相应地被抑制。然后通过Lcd的耦合将高频信号送到变频级Q1的基极。变频级的振荡电压通过C2注入Q1的发射极。Lb、Cb组成振荡回路,反馈是由Lc来实现的,因此,这是一个振荡电压由发射极注入,信号由基极注入的变频级。R1、R2是偏置元件,C1作高频旁路之用。经变频之后,信号变换成465千赫的中频信号,由谐振于465千赫的中频变压器L3取出送至由Q2组成的第一中频放大级。第一中放级加有自动增益控制,由R3、C4组成,C4是一个容量较大的电解电容器,其主要作用是滤除检波后的音频电
10、流。经过Q2放大后的中频信号由L4取出后送到第二中频放大级。R4、R3、W1是第二中放级的偏置电阻,C5、C6是旁路电容。经过二级中放后的信号由Q3的be极单向导电特性进行检波。在电位器W1上的音频信号通过C7耦合到Q4组成的前置低放级。检波后的直流分量通过R3加到中频放大器Q2的基极作自动增益控制。Q4放大后的音频信号,经L5送到由Q5、Q6组成的推挽功率放大级,最后输出较大的音频功率推动扬声器发出声音。R5是Q4的偏置电阻;R7、R8、R9、R10是Q5和Q6推挽放大级的偏置电阻。C10、R6、C11组成电源退耦电路;电容C8用来改善音质;Cat、Cbt为双联可变电容器顶端的微调电容;本机
11、的中频变压器L3、L4的谐振电容与中频变压器做在一起,因此,在印刷电路板中不再设计有谐振回路电容的位置;L5是输入变压器,JK是外接耳机插口。六、 收音机的原理及构造一)调幅收音机构成和工作原理及各部分的作用:1、:选择接收频率为 5251605KHz 的中波调幅信号其中一个,进入混频电路。2、本振:产生相应频率的高频正弦波 ,进入混频电路。3、混频: 和 在混频电路中产生包括 n , n 及 n ( )等各次谐波信号。4、:选取 = - =465KHz 的频率信号进行放大,此信号还是调制波。5、:还原低频信号。6、 :自动增益控制电路,控制来自不同电台的增益。7、前置低放:电压放大8、:功率
12、放大,推动扬声器发声。(二)调频收音机构成和原理及各部分的作用:1、输入回路:选择接收频率为 88108MHz 的中波调幅信号其中一个 ,进入高放级进行信号强度放大,再进入混频电路。2、高放:高频放大器,将输入电路送来的信号放大到混频所需的大小。3、本振:产生相应频率的高频正弦波 ,进入混频电路。4、混频: 和 在混频电路中产生包括 n , n 及 n ( )等各次谐波信号;5、中放:选择 = ( - ) =10.7MHz 的频率信号进行放大,此信号还是调制波;6、限幅:消除干扰信号。7、鉴频:还原出低频信号。8、 AFC :自动频率控制电路,它能使 FM 波段接收频率稳定。9、前置低放:电压
13、放大。10、功放:功率放大,推动扬声器发声。需要说明一下的是:调频收音机可分成单声道调频收音机和调频立体声收音机。区别就在于在鉴频器后加一个立体声解调器,分离出两个音频通道,来推动两个喇叭,形成立体声音。一、最简原理图1-1中LC谐振回路是收音机输入回路,改变电容C使谐振回路固有频率与无线电发射频率相同,从而引起电磁共振,谐振回路两端电压VAB最大,将该电波接收下来。经高频放大电路放大后,通过由二极管D和滤波电容C1构成的检波电路,将调幅信号包络解调下来,得到调制前的音频信号,再将音频信号进行低频放大,送到喇叭,就完全还原成可闻的声波信号。图11 最简单的收音机组成框图由于高放式收音机中高频放
14、大器只能适应较窄频率范围的放大,要想在整个中波频中 535kHZ1605kHZ获得一致放大是很困难的因此用超外差接收方式来代替高放式收音机。二、超外差式收音机原理 所谓超外差式,就是通过输入回路先将高频调制波接收下来,和本地振荡回路产生的本地信号一并送入混频器,再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz)调制波。 超外差的实质就是将调制波不同频率的载波,变成固定的且频率较低的中频载波。在、电视、通讯领域,超外差接收方式被广泛采用。如图3-4。图12 超外差原理 所谓超外差式,就是通过输入回路先将高频调制波接收下来,和本地振荡回路产生的本地
15、信号一并送入混频器,再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz)调制波。 超外差的实质就是将调制波不同频率的载波,变成固定的且频率较低的中频载波。在、电视、通讯领域,超外差接收方式被广泛采用。如图3-4。 在超外差的设计中,本振频率高于输入频率。用同轴双联可变电容器,使输入回路电容C1-2和本振回路电容C1-1同步变化,从而使频率差值始终保持近似一致,其差值即为中频,即: 如接收信号频率是: 600kHz,则本振频率是1055kHz; 1000kHz,则本振频率是1455kHz; 1500kHz,则本振频率是1955kHz; 由于谐振回路
16、谐振频率 ,f 与C不成线性变化,因此必须有补偿电容对其特性进行修正,以获得在收听范围内f与C近似成线性变化,保证f本振-f信号=f中频为一固定中频信号。超外差方式使接收的调制信号变为统一的中频调制信号,在作高频放大时,就可以得到稳定且倍数较高的放大,从而大大提高收音机的品质。比较起来,超外差式收音机具有以下优点:(1) 接收高低端电台(不同载波频率)的灵敏度一致; (2) 灵敏度高;(3) 选择性好(不易串台)。 一、电路的工作原理图1是中夏S 66D型收音机的原理电路图。为了分析方便,它的工作过程可以画成方1、输入调谐电路 输入调谐电路由双连可变电容器的CA和T 1的初级线圈Lab组成,是
17、一并联谐振电路,T l是磁性天线线圈,从天线接收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频率是f=l2LabCA,当改变CA时,就能收到不同频率的电台信号。 2、变频电路 本机振荡和混频合起来称为变频电路。变频电路是以VT l为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。 VT l、T2、CB等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465 KHz的等幅高频振荡信号。由于C l对高频信号相当短路,T l的次级Lcd的电感量又很小,对高频信号提供了通路,所以本机振荡电路是共基极电路,振荡频率由T
18、2、cB控制,CB是双连电容器的另一连,调节它以改变本机振荡频率。T2是振荡线圈,其初次绕在同一磁芯上,它们把VT 1的等电极输出的放大了的振荡信号以正反馈的形式耦合到振荡回路,本机振荡的电压由T2的初级的抽头引出,通过C2耦合到VT 1的发射极上。 混频电路由VT l、T3的初级线圈等组成,是共发射极电路。其工作过程是:(磁性天线接收的电台信号)通过输入调谐电路接收到的电台信号,通过Tl的次级线圈Lcd送到VT l的基极,本机振荡信号又通过C2送到VT l和发射极,两种频率的信号在T 1中进行混频,由于晶体三极管的非线性作用,混合的结果产生各种频率的信号,其中有一种是本机振荡频率和电台频率的
19、差等于465KHz的信号,这就是中频信号。混频电路的负载是中频变压器,T3的初级线圈和内部电容组成的并联谐振电路,它的谐振频率是465KHz,可以把465KHz的中频信号从多种频率的信号中选择出来,并通过T3的次级线圈耦合到下一级去,而其它信号几乎被滤掉。 3、中频放大电路 它主要由VT2、VT3组成的两级中频放大器。第一中放电路中的VT2负载是中频变压器T4和内部电容组成,它们构成并联谐振电路,谐振频率是465KHz,与前面介绍的直放式收音机相比,超外差式收音机灵敏度和选择性都提高了许多,主要原因是有了中频放大电路,它比高频信号更容易调谐和放大。 4、检波和自动增益控制电路 中频信号经一级中
20、频放大器充分放大后由T4耦合到检波管VT3,VT3既起放大作用,又是检波管,VT3构成的三极管检波电路,这种电路检波效率高,有较强的自动增益控制(AGC)作用。 AGC控制电压通过R3加到VT2的基极,其控制过程是: 外信号电压Vb3Ib3Ic3Vc3通过R3 Vb2Ib2Ic2外信号电压检波级的主要任务是把中频调幅信号还原成音频信号,C4、C5起滤去残余的中频成分的作用。 5、前置低放电路 检波滤波后的音频信号由电位器RP送到前置低放管VT4,经过低放可将音频信号电压放大几十到几百倍,但是音频信号经过放大后带负载能力还很差,不能直接推动扬声器工作,还需进行功率放大。旋转电位器RP可以改变VT4的基极对地的信号电压的大小,可达到控制音量的目的。 6、功率放大器(OTL电路) 功率放大器的任务是不仅要输出较大的电压,而且能够输出较大的电流。本电路采用无输出变压器功率放大器,可以消除输出变压器引起的失真和损耗,频率特性好,还可以减小放大器的体积和重量。VT5、VT6组成同类型晶体管的推挽电路,R7、R8和R9、R10分别是VT5、VT6的偏量电阻。变压器T5做倒相耦合,C9是隔直电容,也是耦合电容。为了减少低频失真,电容C9选得越大越好。无输出变压器的功率放大器的输出阻抗低,可以直接推动扬声器工作。专心-专注-专业