《异步电动机动态数学模型的建模与仿真(共22页).doc》由会员分享,可在线阅读,更多相关《异步电动机动态数学模型的建模与仿真(共22页).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上目录概述异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。异步电动机的转子绕组不需与其他电源相连,其定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高。但它的转速与其旋转磁场的同步转速有固定的转差率,因而调速性能较差,在要求有较宽广的平滑调速范围的使用场合(如传动轧机、卷扬机、大型机床等),不如直流电动机经济、方便。因此,在需要高动态性能的调速系统或伺服系统,异步电动机就不能完
2、全适应了。要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。显然,为达到理想的目的,在这一过程中编制与修改仿真程序十分耗费时间和精力,这也大大阻碍了仿真技术的发展和应用。近年来逐渐被大家认识的Matlab软件则很好的解决了系统建模和仿真的问题。异步
3、电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。本次设计就是借助于Matlab软件的Simulink组件来建立异步电动机的动态数学模型,再按照定子磁链定向的方法来仿真分析异步电动机的运行特性。异步电动机动态数学模型的建模与仿真1课程设计任务与要求题 目: 异步电动机动态数学模型的建模与仿真1初始条件:1技术数据: 异步电动机额定数据:PN =3 kw, UN =380 V, IN =6.9 A, nN =1450 r/min, fN=50 Hz;Rs=1.85, Rr=2.658, Ls=0.2941 H, Lr=2898 H, Lm=0,2838 H;J=0.1284 Nm.s2,
4、 np=22技术要求: 在以 w-is-yr 为状态变量的dq坐标系上建模要求完成的主要任务: 1设计内容:(1) 根据坐标变换的原理,完成dq坐标系上的异步电动机动态数学模型(2) 完成以w-is-yr为状态变量的dq坐标系动态结构图(3) 根据动态结构图,完成异步电动机模型仿真并分析电动机起动和加载的过渡过程(4) 整理设计数据资料,完成课程设计总结,撰写设计说明书2异步电动机动态数学模型直流电动机的磁通由励磁绕组产生,可以在电枢合上电源以前建立起来而不参与系统的动态过程(弱磁调速时除外)。因此,它的动态数学模型只有一个输入变量电枢电压和一个输入变量转速,在控制对象中含有机电时间常数和电枢
5、回路电磁时间常数,如果电力电子变换装置也计入控制对象,则还有滞后的时间常数。在工程上能够允许的一些假定条件下,可以描述成单变量(单输入单输出)的三阶线性系统,完全可以应用经典的线性控制理论和由它发展出来的工程设计方法进行分析与设计。但是,同样的理论和方法用来分析与设计交流调速系统时,就不那么方便了,因为交流电机的数学模型和直流电机模型相比有着本质上的区别。(1)异步电机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。在输出变量中,除转速外,磁通也得算一个独立的输出变量。因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的
6、动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。由于这些原因,异步电机是一个多变量(多输入多输出)系统,而电压(电流)、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以用图2-1来定性地表示。图2-1 异步电动机的多变量、强耦合模型结构(2)在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项。这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的。(3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,
7、和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个高阶系统。综上所述,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。2.1三相异步电动机的多变量非线性数学模型在研究异步电动机的多变量非线性数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间互差120电角度,所产生的磁动势沿气隙周围按正弦规律分布。(2)忽略磁路饱和,各绕组的自感和互感都是恒定的。(3)忽略铁心损耗。(4)不考虑频率变化和温度变化对绕组电阻的影响。无论电机转子是绕线型还是笼型的,都将它等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数都相等。这样,实际电机绕组就等效成图2
8、-2所示的三相异步电机的物理模型。图2-2三相异步电动机的物理模型在图2-2中,定子三相绕组轴线A、B、C在空间是固定的,以A轴为参考坐标轴;转子绕组轴线a、b、c随转子旋转,转子a轴和定子A轴间的电角度q为空间角位移变量。规定各绕组电压、电流、磁链的正方向符合电动机惯例和右手螺旋定则。这时,异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。(1)三相定子的电压方程可表示为: (2-1)方程中,、为定子三相电压;、为定子三相电流;、为定子三相绕组磁链;为定子各相绕组电阻。三相转子绕组折算到定子侧后的电压方程为: (2-2)方程中,、为转子三相电压;、为转子三相电流;、为转子三
9、相绕组磁链;为转子各相绕组电阻。(2)磁链方程为: (2-3)式中,是66电感矩阵,其中对角线元素、是各有关绕组的自感,其余各项则是绕组间的互感。(3)电磁转矩方程为: (2-4)式中,为电机极对数,为角位移。(4)运动方程为: (2-5) 式中,为电磁转矩; 为负载转矩;为电机机械角速度;为转动惯量。2.2 坐标变换异步电动机三相原始动态模型相当复杂,简化的基本方法就是坐标变换。异步电动机数学模型之所以复杂,关键是因为有一个复杂的电感矩阵和转矩方程,它们体现了异步电动机的电磁耦合和能量转换的复杂关系。要简化数学模型,须从电磁耦合关系入手。2.2.1坐标变换的基本思路如果能将交流电动机的物理模
10、型等效地变换成类似直流电动机的模式,分析和控制就可以大大简化。坐标变换正是按照这条思路进行的。不同坐标系中电动机模型等效的原则是:在不同坐标下绕组所产生的合成磁动势相等。三相变量中只有两相为独立变量,完全可以也应该消去一相。所以,三相绕组可以用相互独立的两相正交对称绕组等效代替,等效的原则是产生的磁动势相等。两相绕组,通以两相平衡交流电流,也能产生旋转磁动势。当三相绕组和两相绕组产生的旋转磁动势大小和转速都相等时,即认为两相绕组与三相绕组等效,这就是3/2变换。两个匝数相等相互正交的绕组d、q,分别通以直流电流,产生合成磁动势F,其位置相对于绕组来说是固定的。如果人为地让包含两个绕组在内的铁心
11、以同步转速旋转,磁动势F自然也随之旋转起来,成为旋转磁动势。如果旋转磁动势的大小和转速与固定的交流绕组产生的旋转磁动势相等,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了。2.2.2三相-两相变换(3/2变换)三相绕组A、B、C和两相绕组之间的变换,称作三相坐标系和两相正交坐标系间的变换,简称3/2变换。图2-3 三相坐标系和两相正交坐标系中的磁动势矢量ABC和两个坐标系中的磁动势矢量,将两个坐标系原点重合,并使A轴和轴重合。按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在轴上的投影应相等,因此 (2-6) 写成矩阵形式 (2-7)按照变换前后总功率
12、不变,匝数比为 (2-8) 则三相坐标系变换到两相正交坐标系的变换矩阵 (2-9) 三相-两相变换(3/2变换)两相正交坐标系变换到三相坐标系(简称2/3变换)的变换矩阵(2-10)2.2.3 静止两相-旋转正交变换(2s/2r变换)从静止两相正交坐标系到旋转正交坐标系dq的变换,称作静止两相-旋转正交变换,简称2s/2r变换,其中s表示静止,r表示旋转,变换的原则同样是产生的磁动势相等。图2-4 静止两相正交坐标系和旋转正交坐标系中的磁动势矢量旋转正交变(2-11)静止两相正交坐标系到旋转正交坐标系的变换阵 (2-12)旋转正交坐标系到静止两相正交坐标系的变换阵 (2-13) 定子旋转变换阵
13、 (2-14)转子旋转变换阵 (2-15)电压方程 (2-16)磁链方程 (2-17)转矩方程 (2-18)旋转变换是用旋转的绕组代替原来静止的定子绕组,并使等效的转子绕组与等效的定子绕组重合,且保持严格同步,等效后定、转子绕组间不存在相对运动。旋转正交坐标系中的磁链方程和转矩方程与静止两相正交坐标系中相同,仅下标发生变化。从表面上看来,旋转正交坐标系中的数学模型还不如静止两相正交坐标系的简单,实际上旋转正交坐标系的优点在于增加了一个输入量1,提高了系统控制的自由度。2.3状态方程旋转正交坐标系上的异步电动机具有4阶电压方程和1阶运动方程,因此须选取5个状态变量。可选的状态变量共有9个,这9个
14、变量分为5组:转速;定子电流;转子电流;定子磁链;转子磁链。转速作为输出变量必须选取。其余的4组变量可以任意选取两组,定子电流可以直接检测,应当选为状态变量。剩下的3组均不可直接检测或检测十分困难,考虑到磁链对电动机的运行很重要,可以选定子磁链或转子磁链。状态方程 为状态变量。状态变量输入变量输出变量状态方程输出方程转子电磁时间常数电动机漏磁系数根据以上公式绘制动态结构图如图:图2-5 为状态变量在dq坐标系中动态结构图3模型实现3.1AC Motor模块 根据图2-5的动态结构图,用MATLAB/SIMULINK基本模块建立在dq坐标系下异步电动机仿真模型AC Motor模块。AC Moto
15、r模块图如图3-1。根据图2-5计算参数为: 0.055 搭建AC motor 模块如图所示:图3-1 AC motor 模块3.2坐标变换模块(1)3/2 transform 模块 根据静止两相正交坐标系到旋转正交坐标系的变换阵 则有 Usa=0.8165*Ua-0.4082*Ub-0.4082*Uc,Usb=0.7071*Ub-0.7071*Uc其中Ua,Ub,Uc为三相坐标系下的输入电压,Usa和Usb为静止两相正交坐标下的电压。 搭建模块如下图: 图3-2 3/2 transform模块(a) 图3-3 3/2 transform模块(b)(2) 2s/2r transform 模块根
16、据定子旋转变换阵 则有 Usd=cosUsa+sinUsb,Usq=- sinUsa +Usb其中Usa和Usb为静止两相正交坐标下的电压,Usd和Usq为两相旋转坐标系下的电压。为d轴与a轴的夹角。搭建模块如下图 图3-4 2s/2r transform模块(a)图3-5 2s/2r transform模块(b)(3) 2r/2s transform 模块根据旋转正交坐标系到静止两相正交坐标系的变换阵 则有 Isa= cosIsd - sinIsq,Isb= sinIsd + cosIsq其中Isa和Isb为静止两相正交坐标下的电压,Isd和Isq为两相旋转坐标系下的电压。为d轴与a轴的夹角
17、。 搭建模块如下图: 图3-6 2r/2s transform模块(a) 图3-7 2r/2s transform模块(b)(4)2/3 transform 模块 两相正交坐标系变换到三相坐标系(简称2/3变换)的变换矩阵 则有 Ia=0.8165Isa, Ib=-0.4082Isa+0.7071Isb, Ic=-0.4082Isa-0.7071Isb其中Ia,Ib,Ic为三相坐标系下的输入电流,Isa和Isb为静止两相正交坐标下的电流。搭建模块如下图: 图3-8 2/3 transform模块(a) 图3-9 2/3 transform模块(9)(5)2r/2s transform 模块和2
18、s/2r transform 模块中输入量Theta根据下式得到。 (6)若由三相坐标系直接变换到两相旋转坐标系下,得到其坐标变换矩阵为: 搭建仿真模型为 图3-10 3/2r transform模块3.3仿真原理图 在进行异步电动机仿真时,以为状态变量的dq坐标系中的状态方程为内核,在外围加上坐标变换和状态变换,就可得到在dq坐标系下的仿真结果。仿真原理图如图所示。 图3-11 仿真原理图(a) 图3-12 仿真原理图(b)其中有5个输入参数:三相正弦交流电压Usa,Usb,Usc,同步转速W1,负载转矩T1。三相正弦交流电压幅值均为380V,频率为100*pi HZ,相角分别为0、-2*p
19、i/3、2*pi/3,同步转速为常数100*pi, 根据N.M,额定负载转矩为19.76N.M,负载转矩为阶跃信号,阶跃时间为1s,阶跃初始值为0,终值为19.76N.M。正弦电压源Usb参数设置如图所示:图3-13 正弦电压源Usb参数设置4仿真结果及分析在sumilink/configuration parameters中设置仿真时间为2s,最大步长后Relative tolerance设置为1e-50.如下图所示。 图4-1 仿真设置转速和电磁转结果图如下:图4-2 转速与转矩结果图图4-3 转速与转矩局部结果图当负载转矩为额定转矩时,转速不为额定转速。为使转速达到额定值,调整负载转矩为
20、15N.M。图4-4 调整后转速和转矩结果图 图4-5 调整后转速和转矩局部图 由图4-4和图4-5可知,电动机空载启动时,转速迅速上升并达到稳定值1500r/min,电磁转矩在转速上升时作衰减震荡,最后稳定值为零。在1s时突加负载Tl=15N.M,转速降至1450 r/min,即额定值. 三相电流结果图如下:图4-6 三相电流结果图 图4-7 空载稳定三相电流图4-8 带额定负载时的三相电流 由图4-7和图4-8可知,空载运行电流幅值为4A,额定转速时运行电流幅值为6A。5结论本文详细地介绍了基于Matlab/Simulink软件下,建立异步电动机直接转距控制系统中定子磁链仿真模型。三相异步
21、电动机本身是一个高阶、非线性、强耦合的多变量系统,传统的分析方法已很难适应这样复杂系统的分析,计算机仿真技术的发展为复杂系统的分析提供了极为有利的条件。在分析异步电动机的物理模型后,建立异步电动机的动态数学模型,然后推导出两相静止坐标系上的状态方程和转矩方程,利用Matlab/Simulink仿真工具把数学方程转变为模型。运行异步电动机的仿真模型,可观察到异步电动机在启动和加载的情况下,转速、电磁转矩、定子磁链和定子电流的变化曲线,同时分析各个变量之间的变化关系。进一步了解异步电动机的运行特性。仿真结果表明,用Simulink进行三相异步电动机仿真比较方便,且高效直观,得到的结果也是比较接近实
22、际。但是,在仿真的过程中,也遇到了一些问题。比如,在设置仿真参数时,参数不合理,无法观察到正确的波形。因此,在设置参数时,需要一定的技巧才能快速地得到满意的仿真波形。还有就是异步电动机的参数很关键,其精确度关系到构建的异步电动机模型是否符合实际。在建立异步电动机的状态方程时,采用的一些近似处理对模型仿真结果也有一定的影响。因此,应尽可能得到异步电动机的精确参数来构造模块,这样针对性更强,仿真精度更高,仿真结果更可靠。参考文献1 洪乃刚电力电子和电力拖动控制系统的Matlab仿真北京:机械工业出版社,2006 2 陈伯时.电力拖动自动控制系统(第三版).北京:机械工业出版社,20033 薛定宇.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,20024 陈桂明.张明照.应用MATLAB建模与仿真P.北京:科学出版社,20015 李夙.异步电动机直接转距控制M.北京:机械工业出版社,19996 彭鸿才.电机原理及拖动.北京:机械工业出版社,1996专心-专注-专业