stm32的定时器输入捕获与输出比较讲解(共16页).doc

上传人:飞****2 文档编号:14163542 上传时间:2022-05-03 格式:DOC 页数:16 大小:288.50KB
返回 下载 相关 举报
stm32的定时器输入捕获与输出比较讲解(共16页).doc_第1页
第1页 / 共16页
stm32的定时器输入捕获与输出比较讲解(共16页).doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《stm32的定时器输入捕获与输出比较讲解(共16页).doc》由会员分享,可在线阅读,更多相关《stm32的定时器输入捕获与输出比较讲解(共16页).doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上stm32的定时器输入捕获与输出比较(2015-09-28 09:26:24)标签:分类:明确一点对比AD的构造,stm32有3个AD,每个AD有很多通道,使用哪个通道就配置成哪个通道,这里定时器也如此,有很多定时器TIMx,每个定 时器有很多CHx(通道),可以配置为输入捕捉-测量频率用,也可以配置为输出比较-输出PWM使用输入捕捉:可以用来捕获外部事件,并为其赋予时间标记以说明此事件的发生时刻。外部事件发生的触发信号由单片机中对应的引脚输入(具体可以参考单片机的datasheet),也可以通过模拟比较器单元来实现。时间标记可用来计算频率,占空比及信号的其他特征,以

2、及为事件创建日志,主要是用来测量外部信号的频率。输出比较:定时器中计数寄存器在初始化完后会自动的计数。从bottom计数到top。并且有不同的工作模式。另外还有个比较寄存器。一旦计数寄存器在从bottom到top计数过程中与比较寄存器匹配则会产生比较中断(比较中断使能的情况下)。然后根据不同的工作模式计数寄存器将清零或者计数到top值。1、朋友,可以解释一下输入捕获的工作原理不?很简单,当你设置的捕获开始的时候,cpu会将计数寄存器的值复制到捕获比较寄存器中并开始计数,当再次捕捉到电平变化时,这是计数寄存器中的值减去刚才复制的值就是这段电平的持续时间,你可以设置上升沿捕获、下降沿捕获、或者上升

3、沿下降沿都捕获。它没多大用处,最常用来测频率。计数寄存器的初值,是自己写进去的吗?是的,不过默认不要写入我如果捕获上升沿,两个值相减,代表的时两个上升沿中间那段电平的时间。对不?是的timer1有五个通道(对应五个IO引脚),在同一时刻,只能捕获一个引脚的值,对不?那是肯定的,通道很像ADC通道,是可以进行切换的。那输出比较的原理你可以帮我介绍一下不?这里有两个单元:一个计数器单元和一个比较单元,比较单元就是个双缓冲寄存器,比较单元的值是可以根据不同的模式设置的,与此同时,计数器在不停的计数,并不停的与比较寄存器中的值进行比较,当计数器的值与比较寄存器的值相等的时候一个比较匹配就发生了,根据自

4、己的设置,匹配了是io电平取反、变低、还是变高,就会产生不同的波形了。比较单元的值是人为设进去的吧?是的,但是他要根据你的控制寄存器的配置,来初始化你的比较匹配寄存器。上面这个总看不懂,好像不不止你说的那几种情况:“匹配了是io电平取反、变低、还是变高,就会产生不同的波形了”就是比较匹配了你要IO电平怎么办?是清0还是置1?还是怎么样?这样才能产生波形啊 要不然你要比较单元有什么用呢?设置输出就是置1,清除输出就是置0,切换输出就是将原来的电平取反,对不?是的 你理解的很快011:计数器向上计数达到最大值时将引脚置1,达到0时,引脚电平置0,,对不?恩定时器1的输出比较模式怎么用。利用这个功能

5、输出一个1KHZ,占空比为10%的程序怎么写啊?求高人指点1、陪定时器1的功能为特殊功能,不是普通IO在PERCFG这里2、P1SEL引脚选择3、P1DIR设为输出4、T3CC0设置周期5、T3CC1设置占空比6、T3CCTL0 设置通道07、T3CCTL1 设置通道18、T3CTL设为模模式9、用T3CTL打开即可*以下是用定时器做频率源,用定时器测量该频率的应用程序!*调 试STM32的定时器好几天了,也算是对STM32的定时器有了点清楚的认识了。我需要测量4路信号的频率然后通过DMA将信号的频率传输到存储器区域, 手册说的很明白每个定时器有4个独立通道。然后我就想能不能将这4路信号都连接

6、到一个定时器的4个通道上去。理论上应该是行的通的。刚开始俺使用的是 TIM2的123通道,TIM4的2通道来进行频率的测量。由于没有频率发生器,所以我用tim3作为信号源,用TIM2,TIM4来进行测量就ok了 (刚好4个通道了)。请看一开始的程序,以TIM2的1,3通道为例子(2通道设置方法一样):TIM_ICInitStructure.TIM_ICMode =TIM_ICMode_ICAP;/配置为输入捕获模式TIM_ICInitStructure.TIM_Channel =TIM_Channel_1;/选择通道1TIM_ICInitStructure.TIM_ICPolarity =TI

7、M_ICPolarity_Rising;/输入上升沿捕获TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI;/通道方向选择TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1;/每次检测到捕获输入就触发一次捕获TIM_ICInitStructure.TIM_ICFilter =0x0;/滤波TIM_ICInit(TIM2, &TIM_ICInitStructure);/TIM2通道1配置完毕TIM_ICInitStructure.TIM_ICMode = TIM_ICMod

8、e_ICAP;/配置为输入捕获模式TIM_ICInitStructure.TIM_Channel =TIM_Channel_3;/选择通道3TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising;/输入上升沿捕获TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI;/TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1;/每次检测到捕获输入就触发一次捕获TIM_ICInitStructure.TIM_ICFilter

9、 = 0x0;/滤波TIM_ICInit(TIM2, &TIM_ICInitStructure);/TIM2通道3配置完毕以上是输入捕获配置还需要做的工作就是(参考stm32参考手册的TIM的结构框图):TIM_SelectInputTrigger(TIM2,TIM_TS_TI1FP1);/参考TIM结构图选择滤波后的TI1输入作为触发源,触发下面程序的复位TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset);/复位模式-选中的触发输入(TRGI)的上升沿初始化计数器,并且产生一个更新线号TIM_SelectMasterSlaveMode(TIM2,TIM

10、_MasterSlaveMode_Enable);/主从模式选择这样我们就可以很轻松的就得到了连接在TIM2的通道1上的信号的频率,但是3通道的频率的值永远都是跳动的不准,测试了半天也没有找到根本原因,请看TIM的结构框图的一部分 红色箭头所指,这才找到原因,触发的信号源只有这四种,而通道3上的计数器的值不可能在接受到信号的上升沿时候,有复位这个动作,找到原因了。这就是3 通道上的数据不停跳动的原因,要想得到信号的频率也是有办法的,可以取连续两次捕捉的值之差,这个值就是信号的周期,自己根据实际情况去算频率吧。有以上可以得到:stm32的TIM2的四个通道可以同时配置成输入捕捉模式,但是计算CH

11、3,CH4信号的频率步骤有点繁琐(取前后捕捉的差值),但是他的CH1,和CH2可以轻松得到:通道1TIM_SelectInputTrigger(TIM2,TIM_TS_TI1FP1);/参考TIM结构图选择滤波后的TI1输入作为触发源,触发下面程序的复位TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset);/复位模式-选中的触发输入(TRGI)的上升沿初始化计数器,并且产生一个更新线号TIMx-CRR1的值即为信号的周期通道2:TIM_SelectInputTrigger(TIM2,TIM_TS_TI2FP2);/参考TIM结构图选择滤波后的TI1输入作为

12、触发源,触发下面程序的复位TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset);/复位模式-选中的触发输入(TRGI)的上升沿初始化计数器,并且产生一个更新线号TIMx-CRR2的值即为信号的周期STM32的定时器外设功能强大得超出了想像力,STM32一共有8个都为16位的定时器。其中TIM6、TIM7是基本定时器;TIM2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身订做的。基本定时器:具备

13、最基本的定时功能,下面是它的结构:我们来看看它的启动代码:void TIM2_Configuration(void)基本定时器TIM2的定时配置的结构体(包含定时器配置的所有元素例如:TIM_Period= 计数值)TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;设置TIM2_CLK为72MHZ(即TIM2外设挂在APB1上,把它的时钟打开。)RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 ,ENABLE);设置计数值位1000TIM_TimeBaseStructure.TIM_Period=1000;将TIM2_

14、CLK为72MHZ除以72 = 1MHZ为定时器的计数频率TIM_TimeBaseStructure.TIM_Prescaler= 71;这个TIM_ClockDivision是设置时钟分割,这里不分割还是1MHZ的计数频率TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;设置为向上计数模式;(计数模式有向上,向下,中央对齐1,中央对齐2,中央对齐3)TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;将配置好的设置放进stm32f10x-tim.c的库文件中TIM_TimeB

15、aseInit(TIM2,&TIM_TimeBaseStructure);清除标志位TIM_ClearFlag(TIM2,TIM_FLAG_Update);使能TIM2中断TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);使能TIM2外设TIM_Cmd(TIM2,ENABLE);通用定时器:就比基本定时器复杂得多了。除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。我们来详细讲解:如何生成PWM脉冲通用定时器可以利用GPIO引脚进行脉冲输出,在配置为比较输出、PWM输出功能时,捕获/比较寄存器TIMx_CCR被用作比较

16、功能,下面把它简称为比较寄存器。这里直接举例说明定时器的PWM输出工作过程:若配置脉冲计数器TIMx_CNT为向上计数,而重载寄存器TIMx_ARR(相当于库函数写法的TIM_Period的值N)被配置为N,即TIMx_CNT的当前计数值数值X在TIMxCLK时钟源的驱动下不断累加,当TIMx_CNT的数值X大于N时,会重置TIMx_CNT数值为0重新计数。而在TIMxCNT计数的同时,TIMxCNT的计数值X会与比较寄存器TIMx_CCR预先存储了的数值A进行比较,当脉冲计数器TIMx_CNT的数值X小于比较寄存器TIMx_CCR的值A时,输出高电平(或低电平),相反地,当脉冲计数器的数值X

17、大于或等于比较寄存器的值A时,输出低电平(或高电平)。如此循环,得到的输出脉冲周期就为重载寄存器TIMx_ARR存储的数值(N+1)乘以触发脉冲的时钟周期,其脉冲宽度则为比较寄存器TIMx_CCR的值A乘以触发脉冲的时钟周期,即输出PWM的占空比为A/(N+1)。如果不想看的可以直接看我标注的红色字体,就大体可以理解。下面我们来编写具体代码和讲解:void TIM3_GPIO_Config(void)配置TIM3复用输出PWM的IOGPIO_InitTypeDefGPIO_InitStructure;打开TIM3的时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_

18、TIM3,ENABLE);打开GPIOA和GPIOB的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA| RCC_APB2Periph_GPIOB, ENABLE);配置PA6.PA7的工作模式GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6 |GPIO_Pin_7;GPIO_InitStructure.GPIO_Mode =GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed =GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);

19、配置PB0.PB1的工作模式GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0 |GPIO_Pin_1;GPIO_Init(GPIOB,&GPIO_InitStructure);void TIM3_Mode_Config(void)TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;/初始化TIM3的时间基数单位TIM_OCInitTypeDefTIM_OCInitStructure;/初始化TIM3的外设u16 CCR1_Val= 500;u16 CCR2_Val= 375;u16 CCR3_Val= 250;u16 CCR4_

20、Val= 125;/PWM信号电平跳变值(即计数到这个数值以后都是低电平之前都是高电平)TIM3的时间基数单位设置(如计数终止值:999,从0开始;计数方式:向上计数)TIM_TimeBaseStructure.TIM_Period= 999;TIM_TimeBaseStructure.TIM_Prescaler= 0;TIM_TimeBaseStructure.TIM_ClockDivision= TIM_CKD_DIV1 ;TIM_TimeBaseStructure.TIM_CounterMode= TIM_CounterMode_Up;TIM_TimeBaseInit(TIM3,&TIM

21、_TimeBaseStructure);TIM3的外设的设置TIM_OCInitStructure.TIM_OCMode= TIM_OCMode_PWM1;/TIM脉冲宽度调制模式1TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;/这个暂时不知道,stm32固件库里没有搜到。应该是定时器输出声明使能的意思TIM_OCInitStructure.TIM_Pulse =CCR1_Val;/设置了待装入捕获比较寄存器的脉冲值TIM_OCInitStructure.TIM_OCPolarity= TIM_OCPolarity_Hi

22、gh;/TIM输出比较极性高TIM_OC1Init(TIM3,&TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM3,TIM_OCPreload_Enable);/使能或者失能TIMx在CCR1上的预装载寄存器下面3路PWM输出和上面的一样不再解说TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse =CCR2_Val;TIM_OC2Init(TIM3,&TIM_OCInitStructure);TIM_OC2PreloadCon

23、fig(TIM3,TIM_OCPreload_Enable);TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse =CCR3_Val;TIM_OC3Init(TIM3,&TIM_OCInitStructure);TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable);TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;TIM_OCInitStructure.TI

24、M_Pulse =CCR4_Val;TIM_OC4Init(TIM3,&TIM_OCInitStructure);TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);TIM_ARRPreloadConfig(TIM3,ENABLE);/使能TIM3重载寄存器ARRTIM_Cmd(TIM3,ENABLE);/使能TIM3太累了边看边写都这个点了2014年7月27日0:24:13在自己床上写的。下面是看看我们程序达到的4路PWM的效果:可以看到明显占空比不同的4路pwm波。这一节终于讲完,个人觉得敲一遍代码学起来还是蛮容易懂的。希望看到的人也能搞懂。最后补充一点pwm具体能干什么?特别是对广大电子DIY爱好者的应用:智能小车的电机控制:我们可以利用pwm来控制我们的智能小车的车速;机器人:给“机器人关节”舵机周期一定(我以前玩过具体多少毫秒忘记了)pwm波就可以控制舵机的转动角度了;呼吸灯:输入不同的pwm波就可以达到明暗渐明渐暗的专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁