《二次函数的实际应用(典型例题分类)(共8页).doc》由会员分享,可在线阅读,更多相关《二次函数的实际应用(典型例题分类)(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上二 次 函 数 与 实 际 问 题1、理论应用 (基本性质的考查:解析式、图象、性质等)2、实际应用 (求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积()与路宽(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积()与它与墙平行的边的长(m)之间的函数关系式?当
2、x为多长时,花园面积最大?例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0x13.5)元,那么(1) 销售量可以表示为_;(2) 销售额可以表示为_;(3) 所获利润可以表示为_;(4) 当销售单价是_元时,可以获得最大利润,最大利润是_。变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳
3、光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中自变量是_,因变量是_.(2)假设增种棵橙子树,那么果园里共有_棵橙子树,这时平均每棵树结_个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_.(4)果园里种_棵橙子树橙子的总产量最多,最多是_。例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由。变式练习3:如图是
4、抛物线型的拱桥,已知水位在AB位置时,水面宽米,水位上升3米就达到警戒水位线CD,这时水面宽米,若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶? 变式练习4:如图,某大学的校门是一抛物线形状的水泥建筑物,大门的地面高度为8米,两侧距地面4米高处各有一个挂校名的横匾用的铁环,两铁环的水平距离为6米,则校门的高度为 。(精确到0.1米)例四:一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1x12)的利润的月平均值w(万元)满足w=10x+90,第
5、二年的月利润稳定在第1年的第12个月的水平。 (1)设使用回收净化设备后的1至x月(1x12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等? (3)求使用回收净化设备后两年的利润总和。变式练习5:一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本)若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日
6、净收入(日净收入每天的销售额套餐成本每天固定支出)求y与x的函数关系式;若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入按此要求,每份套餐的售价应定为多少元?此时日净收入为多少? 例题五:心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系(04黄冈)(1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意
7、力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?例题六:如图,等腰RtABC的直角边AB,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设 AP的长为x,PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,SPCQ= SABC 变式练习6:在矩形ABCD中,AB6cm,BC12cm,点P从点A出发,沿AB边向点B以1cm/
8、秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,PBQ的面积等于8cm2(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。CDQBPA课后练习:一,利润问题:1某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件(1)若商场平均每天要盈利1200元,每件衬衫应
9、降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?二,面积问题:2,如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上(1)设长方形的一边ABx m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?3.如图1,RtPMN中,P90,PMPN,MN8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上。令RtPMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止。设移动x秒后,矩形ABCD与PMN重叠部分的面积为y。求y与x之间的函数关系式。专心-专注-专业