九年级数学上册-第24章圆学案-人教新课标版(共38页).doc

上传人:飞****2 文档编号:14146512 上传时间:2022-05-03 格式:DOC 页数:38 大小:1.33MB
返回 下载 相关 举报
九年级数学上册-第24章圆学案-人教新课标版(共38页).doc_第1页
第1页 / 共38页
九年级数学上册-第24章圆学案-人教新课标版(共38页).doc_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《九年级数学上册-第24章圆学案-人教新课标版(共38页).doc》由会员分享,可在线阅读,更多相关《九年级数学上册-第24章圆学案-人教新课标版(共38页).doc(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第二十四章 圆测试1 圆学习要求理解圆的有关概念,掌握圆和弧的表示方法,掌握同圆的半径相等这一性质课堂学习检测一、基础知识填空1在一个_内,线段OA绕它固定的一个端点O_,另一个端点A所形成的_叫做圆这个固定的端点O叫做_,线段OA叫做_以O点为圆心的圆记作_,读作_3由圆的定义可知:(1)圆上的各点到圆心的距离都等于_;在一个平面内,到圆心的距离等于半径长的点都在_因此,圆是在一个平面内,所有到一个_的距离等于_的_组成的图形(2)要确定一个圆,需要两个基本条件,一个是_,另一个是_,其中,_确定圆的位置,_确定圆的大小4连结_的_叫做弦经过_的_叫做直径并且直径是

2、同一圆中_的弦5圆上_的部分叫做圆弧,简称_,以A,B为端点的弧记作_,读作_或_6圆的_的两个端点把圆分成两条弧,每_都叫做半圆7在一个圆中_叫做优弧;_叫做劣弧8半径相等的两个圆叫做_二、填空题9如下图,(1)若点O为O的圆心,则线段_是圆O的半径;线段_是圆O的弦,其中最长的弦是_;_是劣弧;_是半圆(2)若A=40,则ABO=_,C=_,ABC=_ 10已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点(1)求证:AOC=BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论11已知:如图,AB是O的直径,CD是O的弦,AB,CD的延长线交于E,若AB=2DE,E=18

3、,求C及AOC的度数 拓广、探究、思考12已知:如图,ABC,试用直尺和圆规画出过A,B,C三点的O测试2 垂直于弦的直径学习要求1理解圆是轴对称图形2掌握垂直于弦的直径的性质定理及其推论课堂学习检测一、基础知识填空1圆是_对称图形,它的对称轴是_;圆又是_对称图形,它的对称中心是_2垂直于弦的直径的性质定理是_3平分_的直径_于弦,并且平分_二、填空题4圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=_cm5如图,CD为O的直径,ABCD于E,DE=8cm,CE=2cm,则AB=_cm5题图6如图,O的半径OC为6cm,弦AB垂直平分OC,则AB=_cm,AOB=_6题图7如图,AB为

4、O的弦,AOB=90,AB=a,则OA=_,O点到AB的距离=_7题图8如图,O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是_8题图9如图,P为O的弦AB上的点,PA=6,PB=2,O的半径为5,则OP=_9题图10如图,O的弦AB垂直于AC,AB=6cm,AC=4cm,则O的半径等于_cm综合、运用、诊断11已知:如图,AB是O的直径,弦CD交AB于E点,BE=1,AE=5,AEC=30,求CD的长12已知:如图,试用尺规将它四等分13今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何(选自九章算术卷第九“句股”中的第九题,1尺=10寸

5、)14已知:O的半径OA=1,弦AB、AC的长分别为,求BAC的度数15已知:O的半径为25cm,弦AB=40cm,弦CD=48cm,ABCD求这两条平行弦AB,CD之间的距离拓广、探究、思考16已知:如图,A,B是半圆O上的两点,CD是O的直径,AOD=80,B是的中点(1)在CD上求作一点P,使得APPB最短;(2)若CD=4cm,求APPB的最小值17如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平)问:该货箱能否顺利通过该桥?测试3 弧、弦、圆心角学习要求1理解圆心角的概念2掌握在同圆

6、或等圆中,弧、弦、圆心角及弦心距之间的关系课堂学习检测一、基础知识填空1_的_叫做圆心角2如图,若长为O周长的,则AOB=_3在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_4在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也_反之,如果两条弦的弦心距相等,那么_二、解答题5已知:如图,A、B、C、D在O上,AB=CD求证:AOC=DOB综合、运用、诊断6已知:如图,P是AOB的角平分线OC上的一点,P与OA相交于E,F点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结

7、论7已知:如图,AB为O的直径,C,D为O上的两点,且C为的中点,若BAD=20,求ACO的度数拓广、探究、思考8O中,M为的中点,则下列结论正确的是( )AAB2AMBAB=2AMCABr点P在O_;d=r点P在O_;dr2)分别是O1和O2的半径,则O1与O2外离d_;O1与O2外切d_;O1与O2相交d_;O1与O2内切d_;O1与O2内含d_;O1与O2为同心圆d_二、选择题5若两个圆相切于A点,它们的半径分别为10cm、4cm,则这两个圆的圆心距为( )A14cmB6cmC14cm或6cmD8cm6若相交两圆的半径分别是和,则这两个圆的圆心距可取的整数值的个数是( )A.1B.2C3

8、D4综合、运用、诊断一、填空题7如图,在126的网格图中(每个小正方形的边长均为1个单位),A的半径为1,B的半径为2,要使A与静止的B相切,那么A由图示位置需向右平移_个单位7题图8相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为_cm二解答题9已知:如图,O1与O2相交于A,B两点求证:直线O1O2垂直平分AB9题图10已知:如图,O1与O2外切于A点,直线l与O1、O2分别切于B,C点,若O1的半径r1=2cm,O2的半径r2=3cm求BC的长11已知:如图,两圆相交于A,B两点,过A点的割线分别交两圆于D,F点,过B点的割线分别交两圆于H,E点求证:HDEF12已知

9、:相交两圆的公共弦的长为6cm,两圆的半径分别为,求这两个圆的圆心距拓广、探究、思考13如图,工地放置的三根外径是1m的水泥管两两外切,求其最高点到地平面的距离14已知:如图,O1与O2相交于A,B两点,圆心O1在O2上,过B点作两圆的割线CD,射线DO1交AC于E点求证:DEAC15已知:如图,O1与O2相交于A,B两点,过A点的割线分别交两圆于C,D,弦CEDB,连结EB,试判断EB与O2的位置关系,并证明你的结论16如图,点A,B在直线MN上,AB=11cm,A,B的半径均为1cmA以每秒2cm的速度自左向右运动,与此同时,B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为

10、r=1t(t0)(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切?测试11 正多边形和圆学习要求1能通过把一个圆n(n3)等分,得到圆的内接正n边形及外切正n边形2理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算课堂学习检测一、基础知识填空1各条边_,并且各个_也都相等的多边形叫做正多边形2把一个圆分成n(n3)等份,依次连结各等分点所得的多边形是这个圆的_3一个正多边形的_叫做这个正多边形的中心;_叫做正多边形的半径;正多边形每一边所对的_叫做正多边形的中心角;中心到正多边形的一边的_叫做正多边形的边心距4正n边形的每

11、一个内角等于_,它的中心角等于_,它的每一个外角等于_5设正n边形的半径为R,边长为an,边心距为rn,则它们之间的数量关系是_这个正n边形的面积Sn=_6正八边形的一个内角等于_,它的中心角等于_7正六边形的边长a,半径R,边心距r的比aRr=_8同一圆的内接正方形和正六边形的周长比为_二、解答题9在下图中,试分别按要求画出圆O的内接正多边形(1)正三角形 (2)正方形 (3)正五边形(4)正六边形 (5)正八边形 (6)正十二边形综合、运用、诊断一、选择题10等边三角形的外接圆面积是内切圆面积的( )A3倍B5倍C.4倍D2倍11已知正方形的周长为x,它的外接圆半径为y,则y与x的函数关系

12、式是( )ABCD12有一个长为12cm的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是( )A10cmB12cmC14cmD16cm二、解答题13已知:如图,正八边形A1A2A3A4A5A6A7A8内接于半径为R的O(1)求A1A3的长;(2)求四边形A1A2A3O的面积;(3)求此正八边形的面积S14已知:如图,O的半径为R,正方形ABCD,ABCD分别是O的内接正方形和外切正方形求二者的边长比ABAB和面积比S内S外拓广、探究、思考15已知:如图,O的半径为R,求O的内接正六边形、O的外切正六边形的边长比ABAB和面积比S内S外测试12 弧长和扇形面积学习要求掌

13、握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积课堂学习检测一、基础知识填空1在半径为R的圆中,n的圆心角所对的弧长l=_2_和_所围成的图形叫做扇形在半径为R的圆中,圆心角为n的扇形面积S扇形=_;若l为扇形的弧长,则S扇形=_3如图,在半径为R的O中,弦AB与所围成的图形叫做弓形当为劣弧时,S弓形=S扇形_;当为优弧时,S弓形=_SOAB3题图4半径为8cm的圆中,72的圆心角所对的弧长为_;弧长为8cm的圆心角约为_(精确到1)5半径为5cm的圆中,若扇形面积为,则它的圆心角为_若扇形面积为15pcm2,则它的圆心角为_6若半径为6cm的圆中,扇形面积为9pcm2,则它的

14、弧长为_二、选择题7如图,RtABC中,C=90,AC=8,BC=6,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为( )7题图ABCD8如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120,AB的长为30cm,贴纸部分BD的长为20cm,则贴纸部分的面积为( )8题图ABCD9如图,ABC中,BC4,以点A为圆心,2为半径的A与BC相切于点D,交AB于E,交AC于F,点P是A上一点,且EPF=40,则圆中阴影部分的面积是( )ABCD综合、运用、诊断10已知:如图,在边长为a的正ABC中,分别以A,B,C点为圆心,长为半径作,求阴影部分的面积11已知:如图,RtABC中,C=90,B=30,以A点为圆心,AC长为半径作,求B与围成的阴影部分的面积拓广、探究、思考12已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点试比较与的长13已知:如图,扇形OAB和扇形OAB的圆心角相同,设AABBdl1,l2求证:图中阴影部分的面积测试13 圆锥的侧面积和全面积学习要求掌握圆锥的侧面积和全面积的计算公式课堂学习检测一、基础知识填空1以直角三角形的一条_

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁