《高强钢的热处理工艺学(共8页).docx》由会员分享,可在线阅读,更多相关《高强钢的热处理工艺学(共8页).docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上高强钢的热处理工艺学低合金超高强度钢具有相当高的强度(Rm1500MPa)和一定的韧性,其合金元素量低,热加工工艺简单,成本相对低廉,因此被广泛应用于航空、航天和常规武器领域。此种钢在使用过程中往往要承受较大的冲击载荷,所以对强度和韧性的要求很高。因此,最终热处理工艺宜为淬火+低温回火,得到回火马氏体组织。以下内容主要介绍热处理工艺以及它对高强钢的组织和力学性能的影响。1普通的热处理工艺热处理是指通过对钢件加热、保温和冷却的操作方法,来改善其内部组织结构,以获得所需要性能的一种加工工艺。这些过程互相衔接,不可间断。钢的热处理大致有退火、正火、淬火和回火四种基本工艺。1
2、.1退火退火是将钢加热到适当温度(Ac1以上),保温一定时间,然后缓慢冷却(炉冷),以获得接近平衡状态组织的热处理工艺叫做退火。退火的主要目的是为了细化组织,提高性能,降低硬度,以便于切削加工;消除内应力;提高韧性,稳定尺寸。使钢的组织与成分均匀化;也可为以后的热处理工艺作组织准备,根据退火的目的不同,退火有完全退火、等温退火、球化退火等以下几种。(1)完全退火:完全退火处理是将亚共析钢加热至Ac3温度以上30-50、过共析钢加热至Accm温度范围,在该温度保持足够时间,使成为奥氏体单相组织(亚共析钢)或奥氏体加上网状渗碳体混合组织(过共析钢)后,再进行炉冷使钢材软化,以得到钢材最佳的延展性及
3、微细晶粒组织。完全退火的目的主要是为了获得低硬度,改善组织和切削加工性,以及消除内应力等。(2)等温退火:等温退火是将奥氏体化后的钢快冷至珠光体形成温度(Ar1)等温保温,使过冷奥氏体转变为珠光体,空冷至室温。等温退火可以缩短退火时间,所得组织也更均匀。(3)球化退火:球化退火是将过共析钢加热到Ac1以上2030,保温24h,使片状渗碳体发生不完全溶解断开成细小的链状或点状,弥散分布在奥氏体基体上,在随后的缓冷过程中,以原有的细小的渗碳体质点为核心,或在奥氏体中富碳区域产生新的核心,形成均匀的颗粒状渗碳体。球化退火后的组织是由铁素体和球状渗碳体组成的球状珠光体。(4)扩散退火(或均匀化退火):
4、将工件加热到Ac3以上(1100左右),保温1015h,随炉缓冷到350,再出炉空冷。工件经均匀化退火后,奥氏体晶粒十分粗大,必须进行一次完全退火或正火来细化晶粒,消除过热缺陷。扩散退火的目的是消除钢锭或大型铸件中不可避免的成分偏析。(5)低温退火(或消除应力退火):将工件随炉缓慢加热到500650,保温,随炉缓慢冷却至500出炉空冷。低温退火的目的是消除工件因冷加工或切削加工以及热加工后快冷而引起的残余应力,以避免其随后可能产生的变形、开裂或后续热处理的困难。(6)再结晶退火:将钢加热至再结晶温度以上,保温后缓慢冷却的工艺方法。这种退火的目的是为了使冷形变钢通过再结晶而恢复塑形,降低硬度,以
5、利于随后的再形变或获得稳定的组织。1.2正火将亚共析碳钢加热到Ac3以上3050,过共析碳钢加热到Accm以上3050,保温,空气中冷却的方法称为正火。正火可以细化晶粒,使组织均匀化,改善铸件的组织和低碳钢的切削加工性;也可以作为预备热处理,为随后的热处理做准备。例如有网状碳化物的高碳钢,采用正火,由于冷速较快,可抑制碳化物再沿奥氏体晶界析出,从而达到消除网状碳化物、获得接近平衡状态的组织的目的。1.3淬火淬火时将钢加热到Ac3或Ac1以上,保温一定时间使其奥氏体化,再以大于临界冷却速度快速冷却,从而发生马氏体转变的热处理工艺。淬火钢得到的组织主要是马氏体(或下贝氏体),此外,还有少量残余奥氏
6、体及未溶的第二相。淬火的目的是提高钢的硬度和耐磨性。根据获得的组织不同,分为马氏体淬火和等温淬火。(1)马氏体淬火:指加热完成奥氏体化后将工件放入冷却介质,连续冷却,形成马氏体组织,然后回火。马氏体组织最主要的性能就是具有高硬度、高强度。碳含量小于0.5%时,马氏体的硬度随含碳量的增加而急剧增高;而当含碳量大于0.8%时,由于随着含碳量在增加,残余奥氏体的量也增加,从而使钢的硬度有所下降。由于碳原子的固溶强化、相变强化、以及时效强化作用使得马氏体组织具有高强度、高硬度。(2)等温淬火:将奥氏体化后的工件淬入到稍高于Ms点的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取
7、出在空气中冷却的处理方法。等温淬火获得的是下贝氏体组织。下贝氏体的针状铁素体内成行的分布着细微的碳化物,类似于低碳马氏体。下贝氏体铁素体中碳的过饱和度更大,导致碳的固溶强化效果比较显著。此外,下贝氏体铁素体晶粒细小,位错密度高以及碳化物弥散分布在铁素体针叶内,所以下贝氏体不就有高的强度、硬度,同时具有良好的塑性和韧性的综合力学性能。所以生产中常用等温淬火得到下贝氏体组织来改善工件的力学性能。1.4回火回火是将淬火钢重新加热到A1以下某一温度,保温,然后冷却的热处理工艺。回火决定了钢在使用状态的组织和性能。回火的目的是为了稳定组织,消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适
8、当配合,满足各种工件不同的性能要求。钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。(1)、低温回火(150250)低温回火后的组织为回火马氏体,它是由过饱和的相和与其共格的碳化物组成。其形态仍保留淬火马氏体的片状或板条状。低温回火的主要目的是消除内应力,降低钢的脆性,同时保持淬火马氏体的高硬度(5862HRC)和高耐磨性,降低淬火应力和脆性。它主要用于各种高碳钢的刃具、量具、冷冲模具、滚动轴承和渗碳工件。(2)、中温回火(350500)中温回火后的组织为回火托氏体,它是由尚未发生再结晶的针状铁素体和弥散分布的极细小的片状或粒状渗碳体组成,其形态仍为淬火马
9、氏体的片状或板条状。中温回火的主要目的是为了获得高的屈强比,高的弹性极限,高的韧性,回火托氏体的硬度为3545HRC。中温回火主要用于处理各种弹簧、锻模。(3)、高温回火(500650)高温回火后的组织为回火索氏体,它是由已再结晶的铁素体和均匀分布的细粒状渗碳体组成。由于铁素体发生了再结晶失去了原来淬火马氏体的片状或板条状形态,呈现为多边形颗粒状,同时渗碳体聚集长大。所以,钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。2热处理对高强钢的组织与性能的影响2.1退火后的组织与性能:退火后的组织为珠光体,珠光体的组织形态有片层状的珠光体和球状或粒状的珠光体。在
10、奥氏体化过程中剩余渗碳体溶解和碳浓度均匀化比较完全的条件下,冷却分解得到的珠光体通常是由片层状的铁素体和片层状的渗碳体相间分布的层状组织。对于片层状珠光体来说,随着转变温度的降低,片间距减小,珠光体越细,铁素体与渗碳体的相界面越多,对位错运动的阻力就越大,即塑性变形的抗力越大,因而使强度、硬度提高;同时,片层间距越小,渗碳体越薄,越容易随铁素体一起变形而不脆裂,增大了钢的塑性变形能力,所以塑韧性也有越好。当奥氏体化温度较低,成分不均匀,组织中有未溶渗碳体存在时,冷却得到的是粒状珠光体。对粒状珠光体来说,转变温度的越低,颗粒越细。当粒状珠光体中的渗碳体颗粒越细时,此渗碳体与铁素体的相界面越多,则
11、钢的强度硬度越高。2.2正火后的组织与性能:正火实质上是退火的一个特例。两者不同之处,主要在于冷却速度较快,过冷度较快,因而发生了伪共析转变,使组织中珠光量增多,且珠光体的片层间距变小。应该指出,某些高合金钢空冷后,能获得贝氏体或马氏体组织,这是由于高合金钢的过冷奥氏体非常稳定。由于正火后的组织上的特点,故正火后的强度、硬度、韧性都比退火后的高,且塑性也并不降低。正火温度较低时,组织主要是铁素体与珠光体,表面组织晶粒细小、均匀,基本为等轴晶,珠光体条带呈团块状分布;心部组织,珠光体条带隐约可见;随着正火温度的升高,表面组织仍为等轴晶,珠光体条带基本消失,呈团块状,但是心部的铁素体组织晶粒粗化,
12、影响钢材的力学性能。另外,适当延长正火保温时间可使偏析的合金元素有充足的时间通过扩散达到均匀分布,提高钢板的使用性能。2.3淬火后的组织与性能:随淬火温度的升高,抗拉强度、洛氏硬度和断面收缩率先缓慢提高到最大值后开始缓慢下降,屈服强度则呈现出下降趋势,而延伸率和冲击吸收功随淬火温度升高,变化不明显,但是当淬火温度更高时,有明显的增大。原因在于,随淬火温度升高,残余奥氏体含量增多,而残余奥氏体塑韧性好,从而改善了材料的塑韧性,因此,随淬火温度升高,塑韧性有所改善。随着淬火温度的升高,一方面强碳化物的溶解度增加,奥氏体基体的合金含量也逐渐提高。淬火后马氏体中的碳和合金元素的饱和度也增大,形成更多的
13、固溶体,起到了一定的固溶强化作用,回火后其强度会有所提高;其次,由于微区成分不均匀,特别是含碳量不均匀,在较低的淬火温度下会形成孪晶马氏体+板条马氏体混合组织,强度和硬度较高。随着淬火温度的升高,合金元素的扩散较快,显微成分均匀化程度提高,淬火时会产生100板条马氏体,强度和硬度下降;再次,随着淬火温度的升高,奥氏体晶粒尺寸增大,相变后的马氏体板条束尺寸增大,强度和硬度下降。2.4回火后的组织与性能:在回火初期硬度快速降低,降低幅度很大、变化速度快,在此阶段,硬度快速大幅下降的主要原因被认为是碳原子从马氏体中大量迅速脱溶,其脱溶过程为短程扩散,脱溶速度和脱溶程度取决于脱溶驱动力,即回火温度与淬
14、火亚稳态的温度。因此回火温度越高,碳的脱溶量越大,在高密度位错和马氏体板条界面处形成的碳富集簇或碳化物越多,淬火过程造成的位错密度降低程度就越大,硬度降低幅度就越大。同时,随回火温度升高,基体的回复与再结晶的进行,C原子的固溶强化效应不断下降,使硬度和强度不断下降,塑性和韧性得到改善。当回火温度高于一定温度时,过饱和C原子已从固溶体中全部析出,C原子的固溶强化作用也就消失,但此时由于强碳化物形成元素的合金碳化物弥散析出,钉扎位错运动,起弥散强化的作用,随着回火温度升高,合金碳化物数量越来越多,成为固溶体的主要强化相,产生二次硬化效应,抑制硬度和强度的降低。当回火温度继续升高时,合金碳化物逐渐聚
15、集并长大,对位错运动阻碍作用大大减弱,使硬度和强度急剧降低,韧性急剧提高。随着回火时间延长,碳原子继续从马氏体中脱溶,但是脱溶析出的速度和量都大为减少,硬度下降趋缓;同时,析出的碳原子发生聚积,并形成与基体存在一定位向关系的碳化物,由于时间较短,碳化物细小弥散,造成一定程度的硬度升高。弥散硬化带来的硬度升高远没有碳原子脱溶、马氏体分解和位错密度降低所造成的硬度下降幅度大。因此硬度下降的表现形式较为复杂。随着马氏体中的碳浓度趋于达到平衡浓度,当回火钢中析出的碳化物达到饱和时,即碳化物体积分数总量恒定不变,这一阶段主要发生碳化物的聚集长大、各种碳化物间的相互转化以及高温时铁素体的回复与再结晶,这些
16、过程受固态长程扩散所控制,即主要受时间因素控制,因此硬度降低的速率越来越慢逐渐趋于零。而对于给定的回火保温时间,钢的硬度随回火温度增加准线性地降低,无二次硬化现象。高强钢经不同温度回火后,其显微组织基本为板条状马氏体(板条M)、少量下贝氏体(BL)和残留奥氏体(AR)的复合组织。由于板条马氏体束由大量近乎平行板条组成,板条间有一定的间距,板条内具有很高的位错密度,以缠结的方式结成位错胞,这种亚结构会引起合金的强硬化,再加上板条M过饱和碳原子引起共格畸变而产生的固溶强化,所以回火初合金保持较高的强度。随着回火温度升高,相由板条状开始发生回复,点阵畸变逐渐消失,片层间距增大,位错胞逐渐消失,因而抗
17、拉强度下降,但是由于析出共格的碳化物弥散分布,阻碍位错的运动而产生弥散强化,弥补了基体损失的固溶强化,从而强度下降的幅度不大。BL组织中碳的过饱和度大、位错密度高,而且碳化物沉淀在铁素体内弥散分布,而这种BL的存在有利于提高合金强韧性。随着回火温度升高,BL含量增多,其中的碳化物增多,且长大趋势较为明显。研究发现,高强度相马氏体加适量的韧性相下贝氏体(M+BL)的复合组织,有利于钢的强韧化。由于少量的BL处于硬相马氏体的包围之中,受到很强的塑性约束,因而强度接近于单相马氏体的强度。同时,少量的韧性相BL会钝化裂纹,缓和应力集中,提高对裂纹的形成与扩展的抗力,从而获得较高的韧性。当回火温度达到一
18、定程度时,板条M和BL等的形态、数量和分布等达到较好的匹配,在保持较高的强度的同时又提高了高强钢的韧性,强韧化效果显著,综合力学性能最佳。3最新的热处理工艺3.1表面淬火仅对钢件表层进行淬火的工艺称为表面淬火。其热处理的特点是用快速加热的方法把钢件表面迅速加热到淬火温度(这时钢件的心部温度较低),然后快速冷却,使钢件的一定深度表层淬硬,心部仍保持其原来状态。这样就提高钢件表面硬度和耐磨性,心部仍具有较好的综合力学性能(一般表面淬火前进行了调质处理)。所以中碳钢制造的齿轮是调质处理后,再经表面淬火。表面淬火由于采用的快速加热方法不同而分为以下几种:(1)感应加热表面淬火:将钢件放入由紫铜管制作的
19、与零件外形相似的感应圈内,向线圈内通入一定频率的交变电流,使线圈内外产生频率相同的交变磁场,同时零件表面上也产生频率相同、方向相反的感应电流,该电流在工件表面形成封闭贿赂,称为“涡流”。厉勇涡流产生的热效应快速将零件表面加热到淬火温度,随即喷水或喷油冷却,是表面获得马氏体组织,以达到淬火的目的。(2)火焰加热表面淬火:是应用氧一乙炔或其他可燃气体的火焰,对工件的表面进行加热,火焰温度很高,能将工件表面迅速加热到淬火温度。然后立即用水喷射冷却,使表面获得马氏体组织,从而提高工件的硬度和耐磨性的一种热处理工艺。调节烧嘴距工件表面的距离和移动速度,可以获得不同厚度的淬硬层。(3)激光加热表面淬火:将
20、激光器产生的高功率密度的激光束照射到工件表面上,使工件表面迅速地在0.01-1s的时间内被加热到奥氏体化温度,然后移开激光束,利用工件自身的传导作用将热量从表面向仍保持冷态的心部发散出去而迅速冷却,实现自冷淬火的目的。(4)电子束加热表面淬火:以电子束作为热源,以极快速度加热工件并自冷硬化的热处理工艺。当高速、收缩的电子流轰击被处理工件表面时,电子穿透表面,进入到距表面一定深度,给材料以能量,增加晶格的振动,使电子的动能转化为热能,因此工件表层的温度迅速上升,而被加热。3.2化学热处理钢的化学热处理是将钢件在特定的介质中加热、保温,使一种或几种元素渗入它的表面,以改变其表层化学成分和组织,从而
21、获得所需机械或化学性能的工艺的总称。化学热处理的过程也是加热、保温、冷却的三个阶段,其不同的是在一定介质中保温。钢中渗入的元素,可能溶于铁中形成固溶体(如渗碳),也可能与铁形成某种化合物(如渗硼),总之他们与基体金属间有相互作用。但近年来新兴的一类处理方法则是将具有某种特殊性能的化合物直接沉淀于基体表面。概括地说,一切渗入化学热处理的过程,都可以分为三个互相衔接而又同时进行的阶段,即分解、吸收和扩散。分解是指零件周围介质的分解,以形成渗入元素的活性原子;吸收是指活性原子被金属表面吸收的过程;扩散是指渗入原子在基体金属中的扩散,这是化学热处理得以不断进行和获得一定深度渗层的保证。主要有一下几种方
22、法:(1)渗碳:把工件置于渗碳介质中加热到奥氏体状态并保温,使活性碳原子产生并渗入工件表层的化学热处理方法。钢件经表面渗碳,整体淬火+回火后,表层为高碳回火马氏体,硬而耐磨;内部为低碳回火马氏体,较好的强韧性。渗碳用钢一般为低碳钢。渗碳后可显著提高钢件表面的硬度,但使得冲击韧性和断裂韧性都会降低,而且表面含碳量越高、渗碳层越深,这两种性能降低得也越多。在淬火时,高碳层发生马氏体转变比心部晚,而且其马氏体的比容比心部大得多,使表层存在较大的残余压应力。这种残余压应力可以抵消相当一部分由于外加负载在表层引起的拉应力,从而提高疲劳强度。(2)渗氮:向工件表面渗入活性氮原子,在工件表层获得一定深度的富
23、氮硬化层以提高其硬度、耐磨性和疲劳强度的一种化学热处理工艺称为渗氮(氮化)。氮化本质上是一种时效强化,是在氮化过程中完成的,所以氮化用钢要先进行调质处理,然后再进行表面渗氮,氮化零件的心部性能使由氮化前的热处理决定的。表层的氮化物,硬度较高,耐磨性更好;其次氮化层表面的化学稳定性高二致密的化合物层使得耐热、耐腐蚀;最后氮化层内的残余压应力比渗碳层打,故抗疲劳性较好。内部组织为中碳合金回火索氏体,具有更高的强度,更好的韧性。(3)碳氮共渗:同时向工件表面渗入活性碳原子和活性氮原子并随后快冷的一种化学热处理工艺。它可提高零件的硬度、耐磨性和疲劳强度。高温碳氮共渗零件一般都是由共渗温度直接淬火,然后
24、再低温回火。由渗层成分和随后的热处理可知,碳氮共渗后的渗层组织与渗碳后在组织相似,但残余奥氏体量较多。另外还有渗硼、渗铝等工艺。3.3表面热处理新技术表面热处理新技术是通过非传统的新的工艺手段赋予表面有不同于基体材料的化学组成、组织结构,因而获得不同于基体材料的性能。主要有热喷涂技术、气相沉淀、离子注入和化学镀等工艺。(1)热喷涂技术:利用专用设备把某种固体材料加热融化或软化并加速喷涂到工件表面,形成一种特制薄层,以提高机件耐蚀、耐磨、耐高温等性能的工艺技术。(2)气相沉淀:利用化学的方法使气相进行一定的化学反应在工件表面上沉淀形成一种固态薄膜的方法,或是利用物理方法来产生沉淀原子或离子,而在室内没有化学反应发生气相沉淀的方法。(3)离子注入:将高能束流的离子打金属材料的表面,用以形成极薄的近表面合金,从而改变基体表面的物理、化学和机械性能的处理工艺。(4)化学镀:把零件置于充满特殊成分化学剂的渡槽中,经过一定时间之后,因化学剂间发生电化学反应而使工件表面获得一定厚度镀层的工艺方法。专心-专注-专业