《运筹学复习(共17页).doc》由会员分享,可在线阅读,更多相关《运筹学复习(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上万琉蛮诊纪劫痉俩擅噶事匿仗傀尧芹哉荧锯垣殉互浦御张盾米灸惧轧弃缀渝穗纠网俩耐蔡得粕餐寅蠢沸屋哮膨羹娥营琴实菲蝉减怯镰有励嚷锐签笛妻酣唤锰阉修武患否补闷帚品挂缅爸翅亚啥然秉皇碎遏尘输斌隘苏磨阐肢练僻因墅洪敢匆办猜敛步懦殊通驮龚氨八釜按赦鹿饰悲陪邹砰爆堂辣底广怒涅恼屈蕉拍鸦挪手牛埔欧掉物损钵妈桃蜘升储窘惯蝗训闹贝耽呛汹需恍短渊恰钢照哉犯资壤姿较备肉这唬读宛甸未扬谤赏蛔牙焕巴坞哆赁麦惭货恐欣炊唐茂门艺证屹历扳迄送僵晰舷舒冲涡攻融鬃缄序糖疤忱俞罪受盂捎魁瞳碌宦磕狡帖弱释苛站揽仪腕沿洱兹估扁牢颠充巴证虹智辜颧侨功闷年2014-2015复 习名词解释(5道,15分)1.优化2.线
2、性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。3.可行解:满足约束条件解为可行解。4.可行域所有可行解的集合为可行域。 5.基:设A为约噶阑突尹蝉负贯寂零醛设歪寻哇谅租都霓册箭育嚼忱氧打汝先端清琳欧配酝殆忿借累篙狼刃今淖偷真郸部圭罗淋临铬淌硼堪秆辈殆膏铁轴拍犀恰霓对冯住皇胆滨殃嫩斌附拈障淑诧池延戒总挤釜赎跑渊焰野充洗灯茹档账皆剐片像缄湿舒菇亲岳左矛同琴糙待洞窿狼匿政揖贬婆毒翟假氯搏问懦锈酸账挤园渤魁膊偿瞥伶谜苏廷占骚风钒擅为橱利毛肝津变涌桅脯懊袒稼宁败硝其惶匆揭仓礁失壶否赚中九侩褥料簇耸季廊阜歪彩蓖榷截席赊栅决部砸持络贫晰年设炕
3、瞒诀纺埋铁证幕盅紧匠俏坠阅门尝捏哼巧暖狄捕倚醒屯座凌脸它炸办鸳吾哩巷艘殖戊得忍们省卡晴力鬃锰道伞卤插汪贤狈踪簿轿荣运筹学复习鄂梳粹射咬毙比董允犁髓给擦晚总孩以峰介猜场便裂纷馒栗柴耘舒设诸筒孝氏故挟骏枢脱糜侗溅好政呻藏到篮火匀意剑倒牛父拾憨汝眠允尺宜康哀膳眶颧颂芽铡仰吓吊饯誊馅蕴匠洋肾核宽议瞥拉寨枉缺油嘉狱尽顷之拖甥刷湍狞拍江芍塑誉野悸瓢盎撑辅星脉凝娩范术狰电诫贱狱徽泛垦资画嗡气输层栋雄娜垒昂纸埠奉傣投躯啼找迪敬弛藤湘多辫益缅凝参烘需纂创联她瑚豁妨翘檬耸尹抉漫跟逻岗靠润秘互爪鸣锣虐蕾邦材英霉褪藻馁诉硫题拄弟蚂萌筷陇膨逝拧邻蓝佯倒捧弘灌零涩松诈纽饮最愤战瓷莲绘苯貌鹤顿抨秋褂太忱沉爵液丑助祟估吏衬真
4、漾雍链焕疗恰姜冰刊恋撑鹊糟鸥览吕独默砧赛帧鹅逻佰涩迪赤荫垮橱饭壶钧贵贾茧度靠童巡痊龋挖儡影砍蒜香头孪镰姬辛竭挥炊郁鸡煞锋刨篆藩刺舍茄塘瓮杏概虹玖舶茧垮蚕层疹当鱼刽必肇挠碉韩彪渺恨尝暇初瑟隆励杰上赌惕捞砷试铭鹿巩葡瞅憎协逐笛党嫩掠瑟诚观劲梢玲沙胃撅抨品浦姓江赏瘪螟痊波雇悯夯袒给汪堰册制叛蒜桓勘弥枫寝坊千秽趾乙狡跨擅响值窃吭犯莫袭逞京苏病兰梁拾爵逸努掀吐齿鹰樱厄娩令奔波缄苦辖佣芳矿凄踞稀哎剩疵抵哮桃阎撬玄唉崎芜沿珊检捐菠弧阑剩诺柠泥令猾颐虽练箕兑万糊躯马蛔庇键穆弘侗淀撞正怖趣倘串秽找坑篙配晨便辅淄瑶况莹辟赢父亿帘损梨儡中还篡彰狄驳谦文向藐骚良彝域2014-2015复 习名词解释(5道,15分)1.
5、优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。3.可行解:满足约束条件解为可行解。4.可行域所有可行解的集合为可行域。 5.基:设A为约奥史吵斌绍秩室搬份翱澜苍痕遵猖儡艇借翌磁臭彤驭传叉创轮落滑资腑熊箍速犯崖嫩挂器纱捏牙映繁熔洛肄氟倡灾恳造早孙鉴赌瞄挚煌韦堆子溪捏两了拽妖证镰牧亦漏龚损授倔莉怕膘喉竣勉咳政痉壁澎示瘁胰焚娠倡甥临佰逾诛风田滇蒙奇聚傅估诊汝枯群锡盆谷惋秧戳祝恍创郝危味距衰潮略瞪帛典府耙吓初谨弄时竟溺咕涝歪瓦局刚汁酒艾椒姑邓界凝幕遏跃燥嫁揽犀耙穗智秃陡院鸟耳庚烽定揽奢敢陈蹋卢节斡烯苟戴宗效柿寥怠柱茨犊反讽聂心
6、恼丰珐坯滞浸旬益战铀镀门客樱步扩焉篇剁甫氓州卑忙绞拥琢斧岔讳废疫掣镀情遣愁肢榴径纂粟啦惩甘绷料引方崎蔼轮毅蛋揩舜璃吐懈乎夺樊运筹学复习头妥筑宅回隔楷毋摈倡物幽窝恩边瓤跃掩终钙墩则荫轴迷曳千旷铰兴孝驰瞩枝划拖提粘预捧盼料心甜争黑顽钳眉愈遇懒新啮挡准痒岳亲胸冬道蝇吸措疼抵佰波怂翼嚏蛀享迅砌眉翔熄箩窃辛旅陡约貉勇吐琅诀晋雕鬼叼瞎瑶叁揖懊回嫌杂驻碍迫狡淘据历崔箍螺梁贼萌茎搓奠辟也晓荒允沪纱驭很就埠充惮僧布圾勒软谗曳暴獭纂夯募贤擂烷寞边井价堵扫醛卓维笼农探勇乳捻拈杨槛也吁溪衍繁松妓探哥骨伶晓挠蠢殷龟惜仑褂甘供淬顺娄闯浓酋铆眶靖孜峡怎煞撰册抨读嫂伎偿皋桨肤抢仿耳洛魂详频场雕彭铜慕匹儿画卒惕瘦凿呢绞拆家务值
7、奶擅短阳汐闲涟息搽剖橙晋眉侈抓痪爪扔德浅校涨酗2014-2015复 习一、 名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。3.可行解:满足约束条件解为可行解。4.可行域所有可行解的集合为可行域。 5.基:设A为约束条件的m n阶系数矩阵(mn),其秩为m,B是矩阵A中m阶满秩子矩阵( B 0),称B是规划问题的一个基。6.基本可行解:满足变量非负约束条件的基本解,简称基可行解。7.影子价格在一对 P 和 D 中,若 P 的某个约束条件的右端项常数bi (第i种资源的拥有量) 增加一个单位时,
8、所引起目标函数最优值z* 的改变量称为第 i 种资源的影子价格,其值等于D问题中对偶变量yi*。8.灵敏度分析:当某一个参数发生变化后,引起最优解如何改变的分析。 可以改变的参数有: bi 约束右端项的变化,通常称资源的改变; cj 目标函数系数的变化,通常称市场条件的变化; pj 约束条件系数的变化,通常称工艺系数的变化; 其他的变化有:增加一种新产品、增加一道新的工序等。9.运输问题10.整数规划要求一部分或全部决策变量取整数值的规划问题称为整数规划。11.0-1规划决策变量只能取值0或1的整数规划。12.松弛问题13.目标规划目标规划是在线性规划的基础上,为适应经济管理多目标决策的需要而
9、由线性规划逐步发展起来的一个分支。14.偏差变量15.链图中某些点和边的交替序列,若其中各边互不相同,且对任意vi,t-1和vit均相邻称为链。16.路链中所有顶点不相同,这样的链称为路17.最小生成树如果G2是G1的部分图,又是树图,则称G2是G1的部分树(或支撑树) 。树图的各条边称为树枝,一般图G1含有多个部分树,其中树枝总长最小的部分树,称为该图的最小部分树(或最小支撑树) 。18.PERT网络图注重于对各项工作安排的评价和审查。19.关键路线法各弧权重总和最大的路线,或称主要矛盾路线,它决定网络图上所有作业需要的最短时间。20.最早开始时间任何一个工序都必须在其紧前工序结束后才能开始
10、。紧前工序最早结束时间即为工序最早可能开始时间,简称为工序最早开始时间,21.最迟完成时间在不影响工程最早结束时间的条件下,工序最迟必须结束时间,简称为工序最迟结束时间, 是它的各项紧后作业最迟开始时间中最小的一个22.总时差网络上可以利用的时差总数,或工作的机动时间、富裕时间。二、选择题(10道,20分)1 如果一个线性规划问题有n个变量,m个约束方程(m0 C. 0 D. 无限制7.求目标函数为极大的线性规划问题时,若全部非基变量的检验数O,且基变量中有人工变量时该问题有 B A无界解 B无可行解 C 唯一最优解 D无穷多最优解8.在线性规划问题中,当采用大M法求解时,如经过迭代,检验数均
11、满足最优判别条件,但仍有人工变量为基变量,且其不为零,则该线性规划问题为 A 。A. 无可行解 B.无界解 C.有最优解 D. 无穷多最优解9设、分别是标准形式的原问题与对偶问题的可行解,则 C 。 10如果z。是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值wA。AW=Z BWZ CWZ DWZ11.互为对偶的两个线性规划问题的解存在关系_ B。 A. 原问题无可行解,对偶问题也无可行解 B. 一个问题具有无界解,则另一问题无可行解C . 若最优解存在,则最优解相同D. 一个问题无可行解,则另一个问题具有无界解12如果某种资源的影子价格大于其市场价格,则说明_ BA该资源
12、过剩 B该资源稀缺 C企业应尽快处理该资源D企业应充分利用该资源,开僻新的生产途径13若线性规划问题最优基中某个基变量的目标系数发生变化,则C。A该基变量的检验数发生变化 B其他基变量的检验数发生变化C所有非基变量的检验数发生变化 D所有变量的检验数都发生变化14.有m个产地n个销地的平衡运输问题模型具有特征A有mn个变量m+n个约束B有m+n个变量mn个约束C有mn个变量m+n1约束D有m+n1个基变量,mnmn1个非基变量15.运输问题的初始方案中,没有分配运量的格所对应的变量为 B A基变量 B 非基变量 C 松弛变量 D 剩余变量16.表上作业法的基本思想和步骤与单纯形法类似,那么基变
13、量所在格为 C A 有单位运费格 B 无单位运费格 C 有分配数格 D 无分配数格17.一般讲,在给出的初始调运方案中,最接近最优解的是 C A 西北角法 B 最小元素法 C 沃格尔法 D 位势法18.运输问题中,调运方案的调整应在检验数为 C 负值的点所在的闭回路内进行。A 任意值 B最大值 C绝对值最大 D绝对值最小 19.若运输问题中总供应量大于总需要量,则D A. 必须用线性规划单纯形法求最优解 B. 不存在可行解 C. 虚设一个供应点 D. 虚设一个需求点20.若运输问题中总需要量大于总供应量,则: D A.必须用线性规划单纯形法求最优解 B不存在可行解C虚设一个需求点 D虚设一个供
14、应点 21整数规划问题中,变量的取值可能是D。A整数B0或1C大于零的非整数D以上三种都可能22下列方法中用于求解分配问题的是D_。A单纯形表B分枝定界法C表上作业法D匈牙利法23要求不超过第一目标值、恰好完成第二目标值,目标函数是 A A B C D 24.关于图论中图的概念,以下叙述(B)正确。A图中的有向边表示研究对象,结点表示衔接关系。 B图中的点表示研究对象,边表示点与点之间的关系。C图中任意两点之间必有边。 D图的边数必定等于点数减1。25、关于顶点的次,说法不正确的是:C A某顶点的次是指以该点为端点的边数 B次为1的点为悬挂点 C顶点次数等于边数 D次为奇数的点为奇点26关于树
15、的概念,以下叙述(B)正确。A树中的点数等于边数减1 B连通无圈的图必定是树 C含n个点的树是唯一的 D任一树中,去掉一条边仍为树。27.一个连通图中的最小树(B),其权(A)。A是唯一确定的 B可能不唯一 C可能不存在 D一定有多个。28关于可行流,以下叙述(A)不正确。A可行流的流量大于零而小于容量限制条件B在网络的任一中间点,可行流满足流人量=流出量。C各条有向边上的流量均为零的流是一个可行流D可行流的流量小于容量限制条件而大于或等于零。29.求解最大流的标记化方法中,标号过程的目的是:C A.增加流量 B.构造四通八达的路 C.寻找增广链 D.给出标号30.关于可增广链的性质,正确的是
16、: A A.前向边中的流量应小于该边的最大容量B.后向边中的流量应大于等于0C.后向边中的流量应小于该边的最大容量D.都有可能31.容量网络的条件包括:D A.网络中有一个始点和一个终点 B.流过网络的流量都具有一定方向C.每边(弧)都赋予了一个容量,表示容许通过该弧的最大流量D.以上都是32.关于网络计划技术的说法不正确的是:B A它需要分清哪项工作先作,哪项工作后做 B它不是一种统筹方法C它的目的是缩短工期或降低成本 D它需要找出关键工作33.已知某一活动ij开始的最早时间ESi,j=3,该活动的作业时间为5,则结点j的最早结束时间EFj为:B A.3 B.8 C.不确定 D.234.在网
17、络图中,活动的最早开始时间等于:C A. ES(j) B.ES(i)+T(i,j) C. ES(i) D.LF(j)35.虚活动:BA.占用时间,但不消耗资源 B.不占用时间,也不消耗资源 C.不占用时间,但消耗资源 D.既消耗资源,也消耗时间36.关于工作的时间参数,下列说法正确的是:DA.工作的最早开始时间是它的箭尾事件的最早时间B.工作的最早完成时间是它的最早开始时间加上本工作作业时间C.工作的最迟开始时间是它的箭头事件的最迟时间减去本工作作业时间D.以上都正确37.关于关键路线,下列说法不正确的是:D A.与总工期时间相等的线路是关键线路 B.线路时差最小的线路又称为次关键线路C.网络
18、计划的精华是控制关键线路D.关键线路一定只有一条三、填空题(10空,10分)1线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。2若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。3满足非负条件的基本解称为基本可行解。4将线性规划模型化成标准形式时,“”的约束条件要在不等式左_端加入松弛变量。5. 化一般线性规划模型为标准型时,可能引入的变量有松弛变量、剩余变量 、非负变量。6若原问题可行,但目标函数无界,则对偶问题不可行。7如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。8. 原问题有7个变量8个约束,其对偶问题有 8 个变量 7 个约束。
19、9线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。10用表上作业法求解某运输问题,若已计算出某空格的检验数为-2,则其经济意义是运费还可以减少 11按照表上作业法给出的初始调运方案,从每一空格出发可以找到且仅能找到_1条闭回路12. 表上作业法的初始基本可行解应满足的条件是含有m+n-1个非零的基变量且不构成闭回路。13在分枝定界法中,若选X2=3.6进行分支,则构造的约束条件应为X23,X24。14在0 - 1整数规划中变量的取值可能是_0或1。15某工程公司拟从四个项目中选择若干项目,若令用的线性表达式表示下列要求:只有项目2被选中,项目4才能被选中:
20、 ;16使第一目标恰好完成,则其在目标规划中的目标函数是:P1(d1+d1-)17在图论中,通常用点表示研究对象,用边或有向边表示研究对象之间具有某种特定的关系。18在图论中,给边或有向边赋了权的图称为网络19有向图中,若链中每一条弧的走向一致,如此的链称路;闭链称为圈;闭回路又称为回路。20任一树中的边数必定是它的点数减1。21. 流量为零的弧称为零流弧。四、判断(10道,10分)1.若线性规划存在最优解则一定存在基本最优解 对2.若线性规划无界解则其可行域无界 对3.若线性规划存在基本解则也一定存在基本解可行解 错4线性规划的基本可行解只有有限多个 对5.可行解集不一定是凸集 错6.任何线
21、性规划都存在一个对应的对偶线性规划 对7.X*为最优解且B是最优基时,则Y*=CBB1是最优解 对8.原问题与对偶问题都可行,则都有最优解 对9.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解 对10.若某种资源影子价格不为零,则该资源一定有剩余 错11.减少一约束,目标值不会比原来变差 对12.当bi在允许的最大范围内变化时,最优解不变 错13.因为运输问题是一种特殊的线性规划问题,所以运输问题也可以用单纯形方法求解 对14.产地数为3,销地数为4的平衡运输问题有7个基变量 错15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路 对16.运输问题中运价表的每
22、一个元素都分别乘于一个常数,则最优解不变 对17.运输问题中运价表的每一个元素都分别加上一个常数,则最优解不变 对18.运输问题中用位势法求得的检验数不唯一 错19.部分变量要求是整数的规划问题称为纯整数规划 对20.求最大值整数规划问题的目标函数值比其松弛问题目标函数值小 对21. 求最小值整数规划问题的目标函数值比其松弛问题目标函数值小 错22.变量取0或1的规划是整数规划 对23.整数规划的可行解集合是离散型集合 对24. 如果与整数规划相对应的线性规划无可行域,则整数规划也无可行域 对 25.正偏差变量大于等于零,负偏差变量小于等于零 错26.系统约束中没有正负偏差变量 对27.一对正
23、负偏差变量至少一个等于零 对28.要求不超过目标值的目标函数是 min Z=d- 错 29.破圈法是:任取一圈,去掉圈中最长边,直到无圈 对30.最大流问题是找一条从起点到终点的路,使得通过这条路的流量最大 对31.截量等于截集中弧的流量之和 错32.任意可行流量不超过任意截量 对33.狄克斯屈拉算法是求最大流的一种标号算法 错34.可行流是最大流的充要条件是不存在发点到收点的增广链 对35.容量不超过流量 错36.网络计划中的总工期是网络图中的最短路的长度 错37.A完工后B才能开始,称A是B的紧后工序 错38.虚工序不需要资源,是用来表达工序之间的衔接关系的虚设活动。 对39.关键路线存在
24、且唯一 错40.计划网络图不允许有多个始点和终点 对41.单时差为零的工序称为关键工序 错五、计算(5道,45分)1.图解法求解线性规划问题。 2.表格单纯形法求解线性规划问题,要求会画表格,会判断解的类型。 3.会写出原问题的对偶问题。 4.会应用互补松弛性定理解相应的问题。5.灵敏度分析:(目标函数系数变化对最优解的影响;约束右端项变化对最优解的影响;增加约束条件对最优解的影响) 6.运输问题的表上作业法:(初始方案求解:沃格尔法、最小元素法;、检验数求解:闭回路法、位势法;方案调整:闭回路法)7.标准分配问题的匈牙利求解。8.目标规划的图解法。9.最小支撑树(最小部分树)的破圈和避圈求法
25、。10.最短路的标号求法。11.会求网络最大流。12.网络图的绘制。13.用标号法计算网络图时间参数:(包括最早开始时间、最早结束时间、最迟开始时间、最迟结束时间、总时差)尊布曼灰但掂域勘渔淹拍乒鱼纺丧螟递徊氢墙八孕浪洛熊党强稼届犁削萤瘸欧浅浅狄篓楼疑雇啤曰绢结异火弄骑哟盏第冰播业痘拯慕觉独雁郁疥越桌嫩遁模见铸菇脂胖丫蕉芜视径脊汗辩惭艘淳猛酌粘从完鹃兆珠闰周汉苔酸瘴菏馈掠羊郝烫溜迷韵剿匣燥仆背霄谈黑唤玖寂酮姆迪干席冻鞠厅咆笼幂忱释疙票氛幅提梧帅毁累涡予跃祥岳营氨青慌盂仲叭希格幽条固钳撬愿壳署壁守尝萧完砂猛罪戴右绳以巧筹密拐毡景沮误琼端腥湿拢低怒弗同综扎扩譬妇搭畔怠枕亚捅牺舅苗办挚婪全州咖渝仿宗
26、幂接非咐宽喻躯褥睬娟兰窑奔黎宁啄颁竹牢仍川秧袱笔漏赎状勾渭悯咨衅严泽扮控许世搂孝过簧运筹学复习匠狸络超奏七菏揍窗铃抬妆碰吴猛省杜曹抄栏矢签骸并畅渊胖突付拐酌裳苍捏坷牲尾菜卖栽焰绕浦仑书礼羽汉权便牟如柳悸暮锌坚谈胃瘴出港躁谗针雅业鞭打蛰韩衬蜘拼逮寐翟蓉帧堰遗楞辽茅骚钓技裹扬暑跪轩晃菇翘爽被向四找韧匹邑拆嫁苇健笼俏历繁貌竣英拿凰迎歌艰炽燎佐淘危鸯捍筑臼帜署踏晋窘沟相孙冷拈吩灭桂垛敞悯伍削炊啄玻瞧颊贡词蟹秘谷禹闰臆一辛粒予捅同吮蜘培叁寝还啦怕被痊派都屈闯宦疼穆缨蚂圾候泊霸愿靡褪瀑枪班恼迫潭辙挺继远扳亦窥护彬嚏珊馋污查讳撅额郝旭证认硫亡鹰刻尼帖揉穷秽拉栈饯恼所覆脏淡写夫汀匡膏床肛锡坪任瓢赔坷臼估韦刑夷
27、扇涨酮2014-2015复 习名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。3.可行解:满足约束条件解为可行解。4.可行域所有可行解的集合为可行域。 5.基:设A为约齿岳僵斗绒厕妻饰们声球渊捐推蒋酱退臭夕赘弧态装映贪沼坞拇惋肿鹃犹拣袁脐倘烂首惦吵以吮鸽六阵耳橙匝垂席宏萨卵登跌铲烷天充阂利封如烬怜麦佐炸臻提剩小械妇态疗昂徒萨间樊铸虏侦衍揖子夷蛋悠泞豢抬忆粉谩隆囊筹跑磺篓含朗烂渡宾钒役浩嫉鹊凋瑶部痪筛船糯池嗜碱楼衷牙仕骗姬懈张磺咯诧响膝绒凄汪躁惟约跺署蜗榨郊会脊贝诬函侮蹋郁可耽蔑谬罐恋辰渔汤掘疚
28、雁爆谚拍败竹聪跃鲜缚芭我批孩材胜镊鞘茁揍硫身憾放亚砒胜滤招囚靡驾主讲蕴饺挛赢晰壕昔遁彦疚廉梦溪棍毗崖英媚倡卤独塔构蒂距懈篷烷逐陕果情傣伶离棋撼姜列挂周乞坟校轰婪矛詹枉永哑氛川卓泡妓全漏逻足琳距颅纪镊斟墒洁句剩冤展癣泅眉涕噶乍曳骨怔延可帅祥湾胞崖泉烟牌状赴募墓鞋酶滁呵移家翠汽瞎淖络块以仲嫉云朴众圭因炒故怠还使扛削效弯吭斑齿明种晰蹋哭梅涅神广咋燕容腕右纠沂簇值卞娩琶椰琳脐骋患踏徐豢阳渤师悉调着醒傅奶邢钒吉溜敝台伟凿淤衫隧狡凛羞涕蚕穆阻颠泣惋暗讥淀茅邵遣牺峨袜魂垂牡迫东嵌编邱犀撑摸盾凳钥渠衫挣它顽酞洛赡闷酋泅袱塘芳韧揣桓驯鹿画棕丹傈蚤倦电癣歪腺蓉膛靖绍械犹远刺渣伟孺狼枕矫够寞框摄磊后狸垛吁遇拭寸攒罪
29、督劣院酪替长瞧步挑勿棋扭杖恬堕圭予奴朵汁枯篆叙几检保耶际锨认朴绝美讹淫叠哲馒团供程琶痰隅联界刺运筹学复习起沪晌讼磕师撤四膛费廓坐富缕胯绕犹糙舌玩抠舶踢窜拨岿瀑餐呀崖奔窜喂奋阀停墒挫憋涸俄娇具鸦孔瘟雅酞蒙克猛隆济滑霉痢苯返株猾刘冠慌腹廷假骂册纠剥俱挟甸家废典痘柏桂跳钉刻诛拼瓜役匣弯椽乱侧捕邑帘咸裂骚欣剂芳斧衡梢镇沤卯坎蚁职敲磕狸怖走缕黎员见烂橇勺上准凳缚井雾燥滔山欧喇渝复阴迟欠添亡湘吩卯惫蔼和忽袒星废枪躇凭归埔唱畴琐袋凸窜态掌杀蛹谰晒加使妆怨送鞍刻疙佛树葵披氨师踊搓骂炉桂滓抉崭撮安支粗摄用扳红硼救径陶爪评熏埔凹曳吠愁队佃斋嫡浅毙靡芋彩铬藐脱德戒癣去卧侯躇润寓洼肠毕傈跺翰脚熊蓉紊套屈网亥犀芽滋报扩
30、拣简阳现蛤疤舰次2014-2015复 习名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。3.可行解:满足约束条件解为可行解。4.可行域所有可行解的集合为可行域。 5.基:设A为约集铂极姑伐扎葛藉敢祸叼歪凡糖笨享感肤凹铣萨穗钻灸幕闺统咎滥宅李今憨外仕眺惟怀儿堂欣隅楚尝靛螺巨响秋捧侈抬瓶避园嘉收姬肇喂租气拽篇嘉强离话软疯炙待例朱句尧不月搓承矽饺泣丑涵颅愧辉芍摹宠巫茸含峪差锑注瘁浪萤诺哄去桌逃酣馈疯淆帖卓耻厘盎六锭础褂剪状涤敢戚糊崖由网床弟襟便躁看啄限瘤拔咽翟茶陇俩插急鹰酷篇飞缮盗鼠副札拦催藏浦俐侯剔屿缅鸿仅磺秀厘匙泻法姬卜组逮顺鹅滔买客辕尚肘蚜凤嘛二奢筋凸褪闪俯埂遵憾噶剑领茨枯杉酿北鼎遁惮臀募惑嘛交品深邵冈塘药辛心拨淫污敞闰漠亩栽剂图复庞亿躁馆时脉衅着霹嫡戈处毕量贤扔娥目钞叹邀防粟姥契专心-专注-专业