《《数学广角──找次品》同步试题(共5页).doc》由会员分享,可在线阅读,更多相关《《数学广角──找次品》同步试题(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上数学广角找次品同步试题浙江省诸暨市璜山镇化泉小学周妮(初稿)浙江省诸暨市教育局教研室汤骥(统稿)一、填空1在10个零件里有1个是次品(次品重一些),用天平称,至少称( )次就一定能找出次品。考查目的:主要考查对找次品的方法的掌握情况。答案:3。解析:可以把10个零件分成三组(3,3,4),把含有3个零件的两组分别放在天平两端。若天平平衡,则次品在剩下的一组里,把剩下的一组分为两组(2,2),分别放在天平两端,下沉的一端当中含有次品,再分成两组(1,1)放在天平两端,找出重的一个即为次品;若天平不平衡,把重的一组分成(1,1,1),任选其中两个称量。若天平平衡,则剩余一
2、个就是次品;若天平不平衡,则下沉的一端所放的就是次品。由上述分析可知至少称3次就一定能找出次品。2灰太狼用1瓶变形药水(质量比纯净水要稍重一点)偷换了羊村的15瓶纯净水中的1瓶,聪明的喜羊羊至少要称( )次才能保证找出这瓶变形药水。考查目的:对找次品的方法的掌握。答案:3。解析:可以把15瓶平均分成三份(5,5,5),把其中的2份分别放在天平上,如果平衡,则剩下的一份就是含有变形药水的;如果不平衡,重的一份就是含有变形药水的一份。再把重的这份分成(2,2,1),用天平来判断找出重的一瓶即为变形药水。3为了用尽可能少的次数找出次品,你会对待测物品进行分组吗?考查目的:找次品中进行合理分组的能力。
3、答案:解析:在找次品的过程中,为了用最少的次数找出次品,应尽可能把待测物品平均分成3份,故6个待测物品可分为(2,2,2)三组;当待测物品为15个时,至少需要称量3次,可分为(5,5,5)三组;当待测物品为19个时,至少需要称量3次,可分为(7,7,5)三组;当待测物品为25个时,至少需要称量3次,可分为(9,9,7)三组。在分组过程中,可以进行比较,找到解决问题的多种策略及最佳策略。4有5个零件,其中有一个是次品,重量稍重,根据如图所示可以推断出( )号零件一定是正品。考查目的:对找次品的逻辑推理过程的掌握。答案:。解析:根据找次品的方法,由于只有一个是次品且其质量稍重,可以肯定这个次品在天
4、平的左边,其他的3个零件都是正品,从而进行正确解答。5一个偶然的机会,阿凡提从他的朋友那里得到了8枚外表一模一样的金币,但是其中有1枚是假的,重量较轻,于是他找来一架天平,想用它找出那枚假的硬币。想一想,他至少需要用天平称( )次才能找出假的硬币。考查目的:利用找次品的方法解决实际问题。答案:2。解析:根据题意,把8枚金币分成三组(3,3,2),把3个一组的分别放在天平的两端。若天平平衡,则次品在2个的一组里,把这2个分成两组(1,1),放在天平两端,轻的就是次品;若天平不平衡,就把轻的一组分成(1,1,1),任选两个放在天平上,若天平平衡,则没称的是次品;若天平不平衡,则轻的是次品。由此可知
5、至少称两次才能找出假的硬币。二、选择1有三袋食盐,其中2袋每袋500克,另一袋不是500克,但不知道比500克轻还是比500克重。用天平至少称( )次能保证称出这袋食盐比500克重或轻。A.1 B.2 C.3 D.4考查目的:对找次品的方法的掌握。答案:B。解析:可先把其中2袋放在天平两端称量,若天平平衡,把未取的那袋与天平上任一袋分别放在天平两端,如果未取的那一袋在低端,那这袋食盐比500克重,反之比500克轻;若第一次称量时天平不平衡,就用同上方法逐步分析进行判断,从而得出结论。2在一批外表相同的零件里混入了一个次品(次品轻一些),如果能用天平称量的方法找这个次品,最好的方法是先把这批零件
6、平均分成( )份,然后再称。A.2 B.4 C.3 D.5考查目的:主要考查对找次品的合理分组方法的掌握。答案:C。解析:如果分成2份,每份的零件数量多,相对来说需要称的次数就会变多;分成4份最少要称2次才能保证找出次品在哪一份当中;故最好分成3份,这样称的次数相对较少,且一次就能找出次品在哪一份当中。3在15瓶口香糖中,14瓶的质量相同,只有1瓶比其他瓶少4片。如果要确保找出轻的那一瓶口香糖,至少需要用天平称( )次。A.2 B.3 C.4 D.1考查目的:对找次品的方法的掌握。答案:B。解析:可把15瓶口香糖分成三组(5,5,5),任选其中两组放在天平两端。若天平平衡,则次品在剩下的一组里
7、,把这组分成三组(2,2,1),称量两组(2,2),从而找出次品;若天平不平衡,找出轻的一组分成三组(2,2,1),称量两组(2,2),找出次品。由上述分析可知,至少需要用天平称3次。4有12箱桃子,其中11箱质量相同,有1箱质量不足,至少称( )次保证一定能找出质量不足的这箱。A.3 B.2 C.4 D.5考查目的:对找次品的方法的掌握。答案:A。解析:把12箱桃子分成三组(4,4,4),任选其中两组放在天平两端,从而找出质量不足的那箱在哪一组内。再把含有次品的一组分成两组(2,2)放在天平两端,找出其中轻的一组继续分成两组(1,1)进行称量,从而找出次品。由上述分析可知,至少需要用天平称3
8、次。5有27个零件,其中有一个零件是次品(次品轻一些),用天平称,至少称( )次能保证找出次品零件。A.2 B.4 C.5 D.3考查目的:主要考查学生依据天平平衡原理找次品的能力。答案:D。解析:把27个零件分成三组(9,9,9),第一次把其中两份分别放在天平两端,若平衡,则次品在未取的一份里;若不平衡,则次品在轻的一端的一份里。把含有次品的一份分成三组(3,3,3),其中两份放在天平两端,若平衡,则次品在未取的一份里;若不平衡,则次品在轻的一端的一份里。从含有次品的3个零件中取两个放在天平两端,若平衡,则未取的那个是次品;若不平衡,轻的一端的就是次品。由此可知至少称3次能保证找出次品零件。
9、三、解答1根据图示信息回答问题。(1)如果用天平称,至少称几次可以保证找出被吃掉5个的那一筐?请写出主要过程。(2)如果天平两边各放5筐,称一次有可能称出来吗?考查目的:对找次品的方法的掌握。答案:(1)根据题意,可把11个苹果分成(4,4,3)三组,先称量(4,4)两组。若天平平衡,则次品在未取的那份中,在未取的3筐中找出轻的就是次品;若天平不平衡,把轻的一组分成(2,2)两组称量,找出较轻的一组继续分成(1,1)称量,从而找出次品。答:如果用天平称,至少称3次可以保证找出被吃掉5个的那一筐。(2)答:如果天平两边各放5筐,称一次有可能称出来。解析:根据题意可知,被吃掉5个的那筐苹果一定比其
10、他筐的重量要轻。教师应引导学生进行合理分组,从而用尽可能少的次数找出次品。21箱牛奶有12袋,其中11袋质量相同,另1袋质量不足,如果用天平来称,至少称几次能保证找出这袋牛奶?考查目的:运用找次品的知识解决实际问题。答案:把12袋牛奶分成(4,4,4)三组,任选两组称量。若天平平衡,则次品在未取的那组中,把未取的4袋分成(2,2)两组称量,找出轻的一组分成(1,1)称量,从而找出次品;若天平不平衡,找出轻的一组分成(2,2)两组称量,再找出轻的一组分成(1,1)称量,从而找出次品。答:至少称3次能保证找出这袋牛奶。解析:根据题意可知,把12袋牛奶平均分为3份可用尽可能少的次数找出次品。教师应引
11、导学生进行分析与合理分组,利用天平平衡原理,用最少的次数找出次品。3爸爸买了5个冰淇淋,其中4个都是150克,另外1个有155克。用天平称,至少称几次一定能找出重155克的那个冰淇淋?考查目的:主要考查依据天平平衡原理解决找次品问题的能力。答案:首先从5个冰淇淋里任选4个,平均分成2份,分别放在天平的两端,若天平平衡,则未取的冰淇淋就是155克的;若天平不平衡,把在天平重的一端的两个冰淇淋分别放在天平两端,比较重的冰淇淋就是155克的。答:至少称2次一定能找出重155克的冰淇淋。解析:根据题意,可把其中4个分成两组(2,2)分别放在天平两端,若平衡,则未取的就是质量稍重的;若不平衡,可以再进行
12、合理分组,从而判断出次品。4有15袋花生,其中有一袋比其他的都要轻。问:(1)至少称几次能找出轻的那袋?(2)称一次有可能找出轻的那一袋吗?为什么?考查目的:主要考查依据天平平衡原理解决实际问题的能力。答案:(1)首先把15袋花生平均分成三份,即(5,5,5)分组,任取两份分别放在天平两端。若天平平衡,则较轻的那袋就在未取的5袋中;若天平不平衡,从天平翘起的一端的5袋花生中任取4袋,平均分成两份,分别放在天平两端。若天平平衡,则较轻的那袋就是未取的;若天平不平衡,把天平翘起的一端的2袋花生分别放在天平两端,翘起的一端所放的就是较轻的那袋。答:至少称3次能找出轻的那袋。(2)答:称一次有可能找出
13、轻的那一袋。从15袋花生中任取14袋,平均分成两份,每份7袋,分别放在天平两端。若天平平衡,则未取的那袋就是较轻的。解析:根据题意可把15袋花生分成三组(5,5,5),选取其中两组用天平称量。若平衡,则较轻的那袋就在未取的5袋中;若不平衡,教师应引导学生找出轻的一组继续进行合理分组,并用天平称量来判断,由此可知至少3次能找出轻的那一袋。第(2)题从15袋中任取14袋分成两组(7,7),用天平称量。若平衡,则未取的那袋就是轻的,故称一次有可能找出轻的那一袋。5一箱糖果里有10袋,其中9袋质量相同,另有一袋质量不足,要轻一些,完成下图并分析,如果用天平至少称几次能保证找出质量不足的那袋糖果?考查目的:用天平平衡的原理解决找次品的问题的能力。答案:如下图所示。答:用天平至少称3次能保证找出质量不足的那袋糖果。解析:解答时把10分成两组(5,5),分别放在天平两端,找出轻的一组,再把轻的一组分成三组(2,2,1),把2袋一组的分别放在天平两端称量。若天平平衡,则剩下的一袋就是质量不足的糖果;若天平不平衡,可用图示方法继续给轻的一组分组,并用天平判断出哪一袋是质量不足的糖果。专心-专注-专业