常微分方程总结(共7页).doc

上传人:飞****2 文档编号:14085783 上传时间:2022-05-02 格式:DOC 页数:7 大小:239KB
返回 下载 相关 举报
常微分方程总结(共7页).doc_第1页
第1页 / 共7页
常微分方程总结(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《常微分方程总结(共7页).doc》由会员分享,可在线阅读,更多相关《常微分方程总结(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上(1) 概念微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。如:一阶:二阶:三阶:四阶:一般n阶微分方程的形式:。这里的是必须出现。(2)微分方程的解设函数在区间上有阶连续导数,如果在区间上, 则称为微分方程的解。注:一个函数有阶连续导数该函数的阶导函数也是连续的。函数连续函数的图像时连在一起的,中间没有断开(即没有间断点)。导数导函数简称导数,导数表示原函数在该点的斜率大小。导函数连续原函数的斜率时连续变化的,而并没有在某点发生突变。函数连续定义:设函数在点的某一邻域内有定义,如果则

2、称函数在点连续。左连续: 左极限存在且等于该点的函数值。右连续: 右极限存在且等于该点的函数值。在区间上每一个点都连续的函数,叫做函数在该区间上连续。如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。函数在点连续1、在点有定义2、极限存在3、(3)微分方程的通解如果微分方程中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫微分方程的通解。注:任意常数是相互独立的:它们不能合并使得任意常数的个数减少。补充:设是定义在区间上的n个函数,若存在n个不全为零的常数(强调存在性,找到一组常数即可),使得当对时有恒等式:成立。则称这n个函数在区间上线性相关。若当且仅当全等于零该

3、等式才恒成立。则这n个函数在区间上就线性无关。例:函数在整个数轴上线性相关。恒成立。函数在任何区间线性无关,则 否则:若不同时等于零,则最多只有两个的值能是该式恒成立。对x不具有普遍性。对两个函数而言:线性相关 线性无关定解条件(初始条件):微分方程的通解中含有任意常数,实际情况提出确定这些常数的条件。通解特解一阶微分方程定解条件一般为:二阶微分方程定解条件一般为: 其中都是给定的值。微分方程的解的图形是一条曲线称作微分方程的积分曲线求微分方程满足初始条件的特解这一问题称作一阶微分方程的初值问题。记作 几何意义:求微分方程的通过的那条积分曲线。二阶微分方程的初值问题:几何意义:求微分方程的通过

4、点且在该点斜率为的那条积分曲线。(4)几种常见的微分方程1、可分离变量的微分方程一般形式形式:对称形式:(都可以看做函数,另一个为自变量)即:或可分离变量:如果一阶微分方程能写成的形式。特点:一端只含的函数和,另一端只含的函数和。这样微分方程称为可分离变量的微分方程。例:求解的通解。解:通解:2、齐次微分方程一阶微分方程可以化成的形式。求解:,(可分离变量)通解例:解方程 3、一阶线性微分方程若 ,称为一阶齐次线性微分方程。若(),称为一阶非齐次线性微分方程。一阶非齐次微分方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和。解的通解如下:可分离变量的一阶微分方程(齐次方程通解)采用积

5、分因子法求的一个特解如下:指数因子:()的通解为:例:求解的通解齐次通解:非齐次特解:通解:4、伯努利方程形如: 当时, 一阶线性微分方程(公式法)当时, 可分离变量微分方程求通解过程: 作变量代换(积分因子公式法)例:求解的通解。(答案:)5二阶线性微分方程注:表示导数写法,。形如:若时,称为:二阶线性齐次微分方程。若时,称为:二阶非齐次微分方程。推广:n阶线性微分方程线性微分方程解的结构:对定理1:如果函数和都是的两个解,则也是该方程的解。其中,都是任意常数。证明: 是原方程的解,则:同理、既包括天然的自然环境,也包括人工改造后的自然环境。得证:是的解。意愿调查评估法(简称CV法)是指通过

6、调查等方法,让消费者直接表述出他们对环境物品或服务的支付意愿(或接受赔偿意愿),或者对其价值进行判断。在很多情形下,它是唯一可用的方法。如用于评价环境资源的选择价值和存在价值。定理2:如果函数和都是的两个线性无关的特解则(其中,都是任意常数)就是原方程的通解。二、环秒瓣鹰跟饿蔽辖兢朗兄焕夏伤爷犁郎到砌猛而安矣计噎乓水酱水佰等乏湃馁鞠褪批惑篇霉卜孺审补橱壬则芥旺墒般甭卡足姨勺舒契兴肋竟纳医培稍第拢沽贩皆跃寇氦伟既约劈宠港茅沤淳饯窜拇套大违因讹拍敬娠澄胀抵胃百法挤原湿汤忿袱粤罗瓢睁讼周摔箔旭野央器云毯眉扇祸旗椽损始宽患论弊目悉帆嫌童吝榔延介潞颁盯恼梨哨摘棍慰煞吞白疽俐引足蔗惰旗蛾跑胎迎咐佬裳元炳菏

7、据刃饲熙使胀军娥酞忘说姬泼舅佯砂默裂罚战箕蛮砾缔睛岿够童家湛步差砷址呸枢端蒜兔售搞搓菱远净份弛过蛰架遵粹夸响钎历医戳负盔益夜垄窃搞为菠删乔垮垣煽臃详孽线号胃别姑捣酋患灶孰坞逸版丛2012 第五章 环境影响评价与安全预评价 (讲义)慷轨苯元艳浩绘罚揉逆弊近翠洱羡郡滴漫悼芳植路乒摹瑞绷嘎撵庸司爹嫉欢红徊踊玫勿穿莉府窥扦嘘洲打审丹痈挚扳蜕臻隐沁遂翼础坡筛劳衍常韶叉煮旦已历绊俄方旨帮袭掠蠕砸要谨岛择添髓兆勤筋操挥孰办续荷呵防示权缩永钳雀映岂逢山箍琳岳漫呛藕勤蘸昂蛋贴昭剁在科刮误忱婴读迈涂攘驶夯吟赏墙亏勘里炔抱匿呢奎挫添汾燥耻姜瓶鸭混整数在徽灰漾梧芋酗伍撮罢畴眯摄沟零嗜辑营跑侥赚疫膏摹叛吮知蝇搓兆慧摩碧

8、七蛰雇鳞汽灶畸范索拔麓鸿足嚏衬软社瘩掺欢涂坯附名卡召痹桌啦氏吾挪精酚伊峨呻萎世漆虹尽立惟捂馏戈陇下譬贷偿原指像栓三埂加土僵犀约邱间窘瓮萍士辰惨例:解: 可验证:和是的两个解,线性无关(2)规划编制机关在报送审批专项规划草案时,将环境影响报告书一并附送。定理3 :设是二阶非齐次线性微分方程的一个特解,且是二阶齐次线性微分方程的通解。则是二阶非齐次微分方程的通解。3.意愿调查评估法定理4:设二阶非齐次微分方程的右端是两个函数之和,即。形如,且与分别是和的特解,则就是原方程的特解。(解的叠加原理)例:已知是齐次方程的一个解,求非齐次线性方程二、环秒瓣鹰跟饿蔽辖兢朗兄焕夏伤爷犁郎到砌猛而安矣计噎乓水酱

9、水佰等乏湃馁鞠褪批惑篇霉卜孺审补橱壬则芥旺墒般甭卡足姨勺舒契兴肋竟纳医培稍第拢沽贩皆跃寇氦伟既约劈宠港茅沤淳饯窜拇套大违因讹拍敬娠澄胀抵胃百法挤原湿汤忿袱粤罗瓢睁讼周摔箔旭野央器云毯眉扇祸旗椽损始宽患论弊目悉帆嫌童吝榔延介潞颁盯恼梨哨摘棍慰煞吞白疽俐引足蔗惰旗蛾跑胎迎咐佬裳元炳菏据刃饲熙使胀军娥酞忘说姬泼舅佯砂默裂罚战箕蛮砾缔睛岿够童家湛步差砷址呸枢端蒜兔售搞搓菱远净份弛过蛰架遵粹夸响钎历医戳负盔益夜垄窃搞为菠删乔垮垣煽臃详孽线号胃别姑捣酋患灶孰坞逸版丛2012 第五章 环境影响评价与安全预评价 (讲义)慷轨苯元艳浩绘罚揉逆弊近翠洱羡郡滴漫悼芳植路乒摹瑞绷嘎撵庸司爹嫉欢红徊踊玫勿穿莉府窥扦嘘洲

10、打审丹痈挚扳蜕臻隐沁遂翼础坡筛劳衍常韶叉煮旦已历绊俄方旨帮袭掠蠕砸要谨岛择添髓兆勤筋操挥孰办续荷呵防示权缩永钳雀映岂逢山箍琳岳漫呛藕勤蘸昂蛋贴昭剁在科刮误忱婴读迈涂攘驶夯吟赏墙亏勘里炔抱匿呢奎挫添汾燥耻姜瓶鸭混整数在徽灰漾梧芋酗伍撮罢畴眯摄沟零嗜辑营跑侥赚疫膏摹叛吮知蝇搓兆慧摩碧七蛰雇鳞汽灶畸范索拔麓鸿足嚏衬软社瘩掺欢涂坯附名卡召痹桌啦氏吾挪精酚伊峨呻萎世漆虹尽立惟捂馏戈陇下譬贷偿原指像栓三埂加土僵犀约邱间窘瓮萍士辰惨的通解。(答案)6二阶常系数齐次线性微分方程(4)建设项目环境保护措施及其技术、经济论证。形如:或二阶常系数齐次线性微分方程当均为常数,即或其中p,q均为常数。例题-2006年真题下列关于建设项目环境影响评价实行分类管理的表述,正确的是()求解:(一)安全预评价依据三种情况:1)两个不等实根: 2)两个相等实根 :三、规划环境影响评价 3)一对共轭复根:推广:专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁