运筹学习题(共14页).doc

上传人:飞****2 文档编号:14081263 上传时间:2022-05-02 格式:DOC 页数:14 大小:163KB
返回 下载 相关 举报
运筹学习题(共14页).doc_第1页
第1页 / 共14页
运筹学习题(共14页).doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《运筹学习题(共14页).doc》由会员分享,可在线阅读,更多相关《运筹学习题(共14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上运筹学练习题 2010-2011-1 天津财经大学 珠江学院一、线性规划:基本概念1、下面的表格总结了两种产品A和B的关键信息以及生产所需的资源Q, R, S:资源每单位产品资源使用量可用资源产品A产品BQRS213123224利润/单位3000美元2000美元满足所有线性规划假设。(1)在电子表格上为这一问题建立线性规划模型; (2)用代数方法建立一个相同的模型;(3)用图解法求解这个模型。2、今天是幸运的一天,你得到了10000美元的奖金。除了将4000美元用于交税和请客之外,你决定将剩余的6000美元用于投资。两个朋友听到这个消息后邀请你成为两家不同公司的合伙人

2、,每一个朋友介绍了一家。这两个选择的每一个都将会花去你明年夏天的一些时间并且要花费一些资金。在第一个朋友的公司中成为一个独资人要求投资5000美元并花费400小时,估计利润(不考虑时间价值)是4500美元。第二个朋友的公司的相应数据为4000美元和500小时,估计利润为4500美元。然而每一个朋友都允许你根据所好以任意比例投资。如果你选择投资一定比例,上面所有给出的独资人的数据(资金投资、时间投资和利润)都将乘以一个相同的比例。因为你正在寻找一个有意义的夏季工作(最多600小时),你决定以能够带来最大总估计利润的组合参与到一个或全部朋友的公司中。你需要解决这个问题,找到最佳组合。(1)为这一问

3、题建立电子表格模型。找出数据单元格、可变单元格、目标单元格,并且用SUMPRODUCT函数表示每一个输出单元格中的Excel等式。(2)用代数方法建立一个同样的模型。(3)分别用模型的代数形式和电子表格形式确定决策变量、目标函数、非负约束、函数约束和参数。(4)使用图解法求解这个模型。你的总期望利润是多少?3、伟特制窗(Whitt Window)公司是一个只有三个雇员的公司,生产两种手工窗户:木框窗户和铝框窗户。公司每生产一个木框窗户可以获利60美元,一个铝框窗户可以获利30美元。Doug制作木框窗户,每天可以制作6扇。Linda制作铝框窗户,每天可以制作4扇。Bob切割玻璃,每天可以切割48

4、平方英尺。每一扇木框窗户使用6平方英尺的玻璃,每一扇铝框窗户使用8平方英尺。公司需要确定每天要制作多少窗户才能使得总利润最大。(1)为这个问题建立一个电子表格模型,找出数据单元格、可变单元格、目标单元格,并且用SUMPRODUCT函数表示每一个输出单元格中的Excel等式。(2)请解释为什么这个电子表格模型是一个线性规划模型。(3)用代数方法建立相同的模型。(4)分别用模型的代数形式和电子表格形式确定决策变量、目标函数、非负约束、函数约束和参数。(5)用图解法求解这个模型。4、世界灯具(World Light)公司生产两种需要金属框架部件和电器部件的电灯装置。管理层需要确定每一种产品要生产多少

5、才能够使得利润最大。每一件产品1要1单位的框架部件和2单位的电器部件。每一件产品2要3单位的框架部件和2单位的电器部件。公司有200个单位的框架部件和300个单位的电器部件。每单位的产品1可得到利润1美元,每单位的产品2可得到利润2美元。产品2最多可以生产60个单位。超过60个单位的产品不能带来利润,因此不能有超产。(1)为这个问题在电子表格上建立一个线性规划模型并求解。(2)用代数形式建立相同的模型。5、普里默(Primo)保险公司引入了两种新产品:特殊风险保险和抵押。每单位特殊风险保险的利润是5美元,每单位抵押是2美元。管理层希望确定新产品的销售量使得总期望利润最大。工作的要求如下:部门每

6、单位工时可使用工时特殊风险抵押承保管理索赔30221024008001200(1)为这个问题在电子表格上建立一个线性规划模型并求解。(2)用代数形式建立相同的模型。6、W&B(Weenies and Buns)是一家食品加工产,制作热狗和热狗面包。他们每星期最多使用200磅自己的面粉制作热狗面包。每一个热狗面包需要0.1磅的面粉。最近他们与Pigland公司签订协议,Piglang公司每个星期一向公司供应800磅猪肉制品。每个热狗需要1/4磅的猪肉制品。其他所有的制作热狗和热狗面包的配料供应不足。W&B有5名全职雇员(每星期工作40小时)。制作每一个热狗需要3分钟,一个热狗面包需要2分钟。一个

7、热狗能带来0.2美元的利润,一个热狗面包能带来0.1美元的利润。W&B公司想知道每一个星期应当制作多少个热狗和热狗面包才能获得最大利润。(1)为这个问题建立一个电子表格模型并求解。(2)用代数形式建立相同的模型。(3)用图解法求解这个模型。7、奥克家具(Oak Works)是一家手工制作餐桌和餐椅的家庭企业。他们从当地的一个林场中获得橡木。林场每月运给他们2500磅的橡木。每一张餐桌要用50磅,一张餐椅要用25磅。家庭成员自己制作全部的家具,每月有480个工时可用。每张餐桌或餐椅要花去6个工时。一张餐桌可以为奥克家具带来400美元的利润,一张餐椅可以带来100美元的利润。由于桌子通常是与餐桌配

8、套卖的,他们想要至少制作两倍于餐桌数量的椅子。奥克家具公司需要确定制作多少餐桌和椅子以使得利润最大。(1)为这个问题在电子表格上建立一个线性规划模型并求解。(2)用代数形式建立相同的模型。(3)用图解法求解这个模型。8、拉尔夫艾德蒙(Ralph Edmund)喜欢吃牛排和土豆,因此他决定将这两种食品作为正餐的全部(加上一些饮料和补充维生素的食品)。拉尔夫意识到这不是最健康的膳食结构,因此他想要确定两种食品的食用量多少是合适的,以满足一些主要营养的需求。他获得了以下营养和成本的信息:成分每份各种成分的克数每天需要量(克)牛排土豆碳水化合物蛋白质脂肪520151552504060每份成本4美元2美

9、元拉尔夫想确定牛排和土豆所需要的份数(可能是小数),以最低的成本满足这些需求。(1)为这个问题在电子表格上建立一个线性规划模型并求解。 (2)用代数形式建立相同的模型;(3)用图解法求解这个模型。二、线性规划的敏感性分析1、G.A.T公司的产品之一是一种新式玩具,该产品的估计单位利润为3美元。因为该产品具有极大的需求,公司决定增加该产品原来每天1000件的生产量。但是从卖主那里可以购得的玩具配件(A,B)是有限的。每一玩具需要两个A类配件,而卖主只能将其供应量从现在的每天2000增加到3000。同时,每一玩具需要一个B类的配件,但卖主却无法增加目前每天1000的供应量。因为目前无法找到新的供货

10、商,所以公司决定自己开发一条生产线,在公司内部生产玩具配件A和B。据估计,公司自己生产的成本将会比从卖主那里购买增加2.5美元每件(A,B)。管理层希望能够确定玩具以及两种配件的生产组合以取得最大的利润。将该问题视为资源分配问题,公司的一位管理者为该问题建立如下的参数表:资源每种活动的单位资源使用量可获得的资源总量生产玩具生产配件配件A配件B21-1-130001000单位利润 3美元-2.5美元(1)为该问题建立电子表格模型并求解。 (2)因为两类活动的单位利润是估计的,所以管理层希望能够知道,为了保持最优解不变,估计值允许的变动范围。针对第一个活动(生产玩具),运用电子表格,求出该活动单位

11、利润从2美元增加到4美元每次增加50每份时问题的最优解和总利润。在最优解不变的前提下,单位利润可以偏离其初值3美元多少?(3)针对第二个活动(生产配件),重复(2)的分析,该活动的单位利润从-3.5美元增加到-1.5美元(第一种活动的单位利润固定在3美元)。(4)运用Excel灵敏度报告来找到每个活动单位利润的允许变动范围。(5)运用Excel灵敏度报告来描述在最优解不变的前提下,两个活动单位利润最多同时能改变多少。2、考虑具有如下参数表的资源分配问题:资源每种活动的单位资源使用量可获得的资源总量121211231012单位利润 2美元5美元该问题的目标是通过确定各种活动的水平,实现最大总利润

12、。在what-if的分析中得知,对单位利润的估计在50%的范围内波动,也就是说,两个活动单位利润的可能值分别在13美元和2.57.5美元。(1)基于最初的单位利润估计为该问题建立电子表格模型,然后用Excel求得最优解并生成灵敏度报告。 (2)如果活动1的单位利润从2美元减少到1美元,以及从2美元增加到3美元的情况下,最优解是否保持不变。(3)同样,固定活动1的单位利润为2美元,如果活动2的单位利润从5美元减少到2.5美元,以及从5美元增加到7.5美元的情况下,最优解是否保持不变。(4)运用灵敏度报告,找出每个单位利润的允许变化范围,然后用求得的允许变化范围检验(2)、(3)是否正确。(5)运

13、用Excel灵敏度报告来描述在最优解不变的前提下,两个活动单位利润最多同时能改变多少。3、某工厂计划生产,两种产品,在生产过程中共使用三种资源。其中产品每单位需要第一种资源2千克第二种资源3千克,需要第三种资源1千克;产品需要第一种资源2千克第二种资源2千克,第三种资源0.5千克。此工厂目前有能力得到A种资源8千克,B种资源12千克,C种资源3千克。当产品投放市场上之后,产品可得到利润3元,产品可得到利润2元。回答下列问题:(1)请帮助工厂厂长做一决策,使得所生产的产品获利最大。(2)当最优决策做出后,各种资源是否还有剩余,请明确指出各个资源的剩余情况。(3)如果工厂现在又可以得到A种资源两千

14、克,利润时否可以得到改变,若可以,改变多少?(4)当其它情况不变,市场发生变化时,假设产品的利润变为4元,决策会改变吗?4、K&L公司为其冰激凌经营店供应三种口味的冰激凌:巧克力、香草和香蕉。因为天气炎热,对冰激凌的需求大增,而公司库存的原料已经不够了。计这些原料分别为:牛奶、糖和奶油。公司无法完成接收的订单,但是为了在资源有限的条件下使利润最大化,公司需要确定各种口味产品的最优组合。巧克力、香草和香蕉三种口味的冰激凌的销售利润分别为每加仑1.00美元、0.90美元和0.95美元。公司现在有200加仑牛奶、150磅糖和60加仑奶油的库存。这一问题代数形式的线性规划表示如下:假设:C=巧克力冰激

15、凌的产量(加仑),V=香草冰激凌的产量(加仑),B=香蕉冰激凌的产量(加仑)最大化:利润=1.00C+0.90V+0.95B约束条件牛奶:0.45C+0.50V+0.40B200(加仑)糖: 0.50C+0.40V+0.40B150 (加仑)奶油:0.10C+0.15V+0.20B60 (加仑)且 C0,V0,B0使用Excel求解,求解后的电子表格和灵敏度报告如下图所示(注意,因为在(6)中将会讨论牛奶约束,所以该部分在下面的图中隐去了)。不用Excel重新求解,尽可能详尽地回答下列问题,注意,各个部分是互不干扰、相互独立的。ABCDEFG1巧克力香草香蕉2单位利润1.000.900.953

16、4原料每加仑冰激凌所用原料所需原料可用原料5牛奶0.450.50.41802006糖0.50.40.41501507奶油0.10.150.2606089巧克力香草香蕉总利润10每加仑030075341.25可调单元格单元格名称最终价值成本削减目标系数增加上限降低下限$C$10每加仑巧克力用量0-0.037510.03751E+30$D$10每加仑香草用量30000.90.050.0125$E$10每加仑香蕉用量7500.950.02140.05约束单元格名称最终价值影子价格目标系数增加上限降低下限$F$5所用牛奶量$F$6所用糖量1501.8751501030$F$7所用奶油量60160153

17、.75(1)最优解和总利润是多少?(2)假设香蕉冰激凌每加仑的利润变为1.00美元,最优解是否改变,对总利润又会产生怎样的影响?(3)假设香蕉冰激凌每加仑的利润变为92美分,最优解是否改变,对总利润又会产生怎样的影响?(4)公司发现有3加仑的库存奶油已经变质,只能扔掉,最优解是否改变,对总利润又会产生怎样的影响?(5)假设公司有机会购得15磅糖,总成本15美元,公司是否应该购买这批糖,为什么?(6)在灵敏度报告中加入牛奶的约束,并解释如何减少各种产品的产量?5、大卫、莱蒂娜和莉迪亚是一家生产钟表的公司业主以及员工,大卫、莱蒂娜每周最多工作40个小时,而莉迪亚每周最多能工作20个小时。该公司生产

18、两种不同的钟表:落地摆钟和墙钟。大卫是机械工程师,负责装配钟表内部的机械部件;而莱蒂娜是木工,负责木质外壳的手工加工;莉迪亚负责接收订单和送货。每一项工作所需时间如下表所示:任务所需时间(小时)落地摆钟墙钟组装机械配件雕刻木质外壳运输683443每生产并销售一个落地摆钟产生的利润是300美元,每个墙钟为200美元。现在,三个业主希望能够得到各种产品产量的最优组合,以使得利润最大化。将会讨论牛奶约束,所以该部分在下面的图中隐去了)。(1)为该问题建立线性规划模型。(2)如果落地摆钟的单位利润从300美元增加到375美元,而模型的其他不变,最优解是否会改变。然后用该模型检验如果墙钟的单位利润也从2

19、00美元变动到175美元,最优解是否会改变。(3)在电子表格上建立和求解该问题的原始模型。(4)运用Excel分析,如果落地摆钟的单位利润在150美元到450美元之间每增加20美元给最优解和总利润带来的影响(墙钟单位利润不变)。然后同样分析,当墙钟的单位利润在50美元岛50美元之间每增加20美元给最优解和总利润带来的影响(落地摆钟单位利润不变)。而模型的其他不变,运用灵敏度报告确定最优解是否会改变?用这些信息来估计每种钟单位利润允许取值范围。(5)象(4)中一样,只是每增加20美元变为每增加50美元,给最优解带来的影响。(6)依次对每个业主用Excel分析,如果他们决定将自己的最大可用工时增加

20、5小时每周,那么给最优解和总利润带来的影响。(7)运用Excel分析,如果只是大卫将最大可用工时变为35、37、39、41、43、45时最优解和总利润的变化。然后同样分析,莱蒂娜将可用工时进行上述改变时的情况。最后分析,当莉迪亚将最大可用工时变为15、17、19、21、23、25时最优解和总利润的变化。(8)生成Excel灵敏度报告,用它来决定每种钟的单位利润和每个业主的最大可用工时的允许变化范围。(9)为了增加总利润,三个业主同意增加他们三个人中的一个人的工作时间,增加该人的工作时间必须能够最大限度地增加总利润。运用灵敏度报告,确定应该选择哪一个人(假设模型的其他部分没有任何变动)。(10)

21、解释为什么有一个人的影子价格是0。(11)如果莉迪亚将工作时间从每周的20小时增加到25小时,是否可以用影子价格分析该变动对结果的影响?如果影子价格有效,总利润将增加多少? (12)在(1)中加入另一变动,即大卫的工作时间从每周40小时减少到35小时,重新分析。6、考虑具有如下参数表的资源分配问题:资源每种活动所需的单位资源使用量可获得的资源总量1212113184单位利润 1美元2美元该问题的目标是确定各种活动的单位数量使得总利润最大。(1)使用作图法求解该模型。 (2)增加1个单位的可获得的资源数量,用作图法再次求解,从而确定各种资源的影子价格。(3)对(1)和(2)部分用电子表格建模并求

22、解。(4)用Excel依次对各个资源分析当可用资源的数量从低于原始值4到高于原始值6的范围内每增加1单位对最优解和总利润的影响。运用结果估计可用资源量的允许取值范围。(5)运用灵敏度报告求得影子价格。同样用该报告找到在影子价格保持正确的前提下可用资源的允许范围。(6)描述一下为什么在管理层有权改变可获得的资源量时,影子价格是很有用的。三、运输问题和指派问题1、研究分析一下拥有如下所示参数表的运输问题:销地产地单位成本(美元)供应12312397661278106432需求423(1)画出这个问题的网络表示图。(2)用电子表格描述这个问题,然后使用Excel得到最优解决方案。2、考虑拥有如下所示

23、参数表的运输问题: 目的地出发地单位成本(美元)供应1234123324743638425523需求3322 (1)画出这个问题的网络表示图。(2)用电子表格描述这个问题,然后使用Excel得到最优解决方案。3、考斯雷司(Cost-Less)公司从它的工厂向它的四个零售点供应货物,从每一个工厂到每一个零售点供应货物,从每一个工厂到每一个零售点的运输成本如下所示: 零售点工厂单位成本(美元)12341234500200300200600900400100400100200300200300100200工厂1、2、3、4每个月的生产量为10、20、20、10个运输单位。零售点1、2、3、4每个月所

24、需货物量为20、10、10、20个运输单位。配送经理兰迪史密斯现在需要确定每个月从每一个工厂制中药运送多少给相应零售点的最佳方案。兰迪的目标就是要使总的运输成本最小。(1)把这个问题描述为一个运输问题并写出相应的出发地、供应量、目的地、需求量和单位成本。(2)用电子表格描述这个问题,然后使用Excel得到最优解决方案。4、恰德费尔(Childfair)公司拥有三个生产折叠婴儿车的工厂,并运往四个配送中心。工厂1、2和3枚月产量为12、17、11个运输单位。同时配送中心每月需要10个运输单位的货物。从每一个工厂到每一个配送中心的路程如下表所示: 零售点工厂到配送中心的距离(英里)12341238

25、0011006001300140012004006008007001000900每一个运输单位的运输成本为每英里100.5美元。(1)把这个问题描述为一个运输问题并写出相应的出发地、供应量、目的地、需求量和单位成本。(2)用电子表格描述这个问题,然后使用Excel得到最优解决方案。5、汤姆想要在今天买3品脱的家酿酒,明天买另外的4品脱。迪克想要销售5品脱的家酿酒,今天的价钱为每品脱3.00美元,而明天的价钱是每品脱2.70美元。哈里想要销售4品脱的家酿酒,今天的价钱为每品脱2.90美元,而明天的价钱为每品脱2.80美元。汤姆想要知道他要如何进行购买才能在满足他的口渴需求的基础之上,使他的购买成

26、本达到最小值。为这个问题建立电子表格模型并解决它。6、沃斯泰克(Versatech)决定要生产三种新的产品,现在公司所属的五个工厂拥有生产余力来进行新产品的生产。在工厂1、2、3、4、5中第一种产品的单位生产成本分别为31美元、29美元、32美元、28美元和29美元。第二种产品的单位生产成本分别为45美元、41美元、46美元、42美元和43美元。第三种产品只能在工厂1、2、3中进行生产,工厂4和5没有生产这种产品的能力。第三种产品在工厂1、2、3中的单位生产成本为38美元、35美元、40美元。销售预测表明产品1、2、3每天必须生产600、100、800个单位。不管是单一产品还是产品组合,工厂1

27、、2、3、4、5每天的产量为400、600、400、600、1000单位。假设拥有生产这种新产品能力的工厂可以在生产能力范围内生产任何数量任何组合的产品。管理人员希望知道怎样安排这些新产品的生产才能使总生产成本最小。对这个问题进行描述并求解。7、假设英国、法国和西班牙生产了世界上所有的小麦、大麦和燕麦。世界上对小麦的需求要求种植1.25亿英亩的小麦。同样,需要种植6000万英亩的大麦和7500万英亩的燕麦。在英国、法国和西班牙这三个国家中能够用来耕种的土地分别为7000万英亩、1.1亿英亩、8000万英亩。在这三个国家中种植一英亩小麦所需要的劳动时间分别为18小时、13小时和16小时,种植一英

28、亩大麦所需要的劳动时间分别为15小时、12小时和12小时,种植一英亩燕麦所需要的劳动时间分别为12小时、10小时和16小时。在这三个国家中,种植小麦的每小时劳动成本为9.00美元、7.20美元、9.90美元;种植大麦的每小时劳动成本为8.10美元、9.00美元、8.40美元;种植燕麦的每小时劳动成本为6.90美元、7.50美元、6.30美元。需要解决的问题是确定如何对这三个国家的土地进行分配,种植不同的农作物来满足整个世界的需求,并使劳动成本最小。对这个问题进行描述并求解。8、承包商苏珊美格想要向三个建筑工地运送沙土。她可以在城市北面的沙土矿中购买18吨的沙土,在城市南面的沙土矿中购买14吨的

29、沙土。建筑工地1、2、3需要的沙土量为10吨、5吨和10吨。在每一个沙土矿购买一吨沙土的成本以及每一吨的运输成本如下表所示: 矿到每一个工地的单位运输成本(美元)每吨价钱123南面北面306060305040100120苏珊想要确定应该从每一个沙土矿运输多少沙土到每一个工地,才能使购买和运输成本的总和达到最低。对这个问题进行描述并求解。9、万诺特(Onenote)公司为四个顾客在三个工厂生产一种产品。在未来一周内这三个工厂的产量为60、80、40单位。公司决定向顾客1供应40个单位,向顾客2供应60个单位,向顾客3至少要供应20个单位。顾客3和4都想要尽可能多地购买剩下的产品。从工厂i运送单位

30、数量的产品给顾客j的净利润如下表所示(单位:美元): 顾客工厂到每一个顾客的单位净利润(美元)1234123800500600700200400500100300200300500管理层希望知道为了使利润最大,应当向顾客3和4提供多少单位的产品以及应当从每一个工厂向每一个顾客运送多少单位的产品。用电子表格描述这个问题并求解。10、姆未特(Move-it)公司拥有两个生产叉车的工厂,并把叉车运送到三个配送中心。这两个工厂的生产成本是相同的。把叉车从每一个工厂运送到每一个配送中心的单位成本如下表所示(单位:美元): 配送中心工厂到每一个配送中心的单位成本(美元)123AB8006007008004

31、00500每周两个工厂要生产总共60辆叉车,并把它们运送到配送中心去。每一个工厂每星期最多可以生产并运输50辆叉车,所以在决定每一个工厂生产多少叉车的问题上具有很大的灵活性。我们的目标是要减少运输叉车的成本。然而,每一个配送中心每一周都必须要接受到20辆叉车。管理人员的目标是要确定每一个工厂生产多少叉车并制定运输方案,是的总运输成本最小。对这个问题进行描述并求解。11、速制(Build-Em-Fast)公司在未来三周内每周都要向它最好的顾客提供三个小器具,即使有时候制作这些器具需要进行加班。她可以在城市北面的沙土矿中购买18吨的沙土,在城市南面的沙土矿中购买14吨的沙土。相关的生产数据如下表所

32、示: 周最大的生产能力正常时间单位制作成本(美元)正常时间加班时间123231222300500400每一周加班时间的单位生产成本比正常时间多100美元。存储成本是每周每个50美元。现在已经有两个器具的存货,但是公司不想在三周后还有存货。管理人员想知道每一周需要制作多少个器具才能使总成本最小。对这个问题进行描述并求解。12、MJK制造公司在接下来的三周内每周都要按照销售合同制造出两个质量优良的产品。这两个产品使用相同的设备并需要投入相同的生产能力。每个月可供使用的生产和存储设备都会发生变化。所以生产能力、单位生产成本以及单位存储成本每个月都不相同,很有必要在某些月中多生产一种活着多种产品并存储

33、起来以备需要的时候使用。对于每一个月来说,下表前几列给出了在正常时间(RT)和加班时间(OT)内能够生产这两种产品的总数。对于每一种产品来说,在后面的几栏中给出了:(1)按照合同需要生产的数量;(2)在正常时间内的单位成本;(3)在加班时间内的单位成本;(4)把额外的产品储存到下一个月的储存成本。这两种产品的数量用“/”区分开来,产品1在“/”的左边而产品2在“/”的右边。 产品1/产品2月最大的生产总量销售单位生产成本(千美元)单位储存成本(千美元)RTOTRTOT123108103235/33/54/415/1617/1519/1718/2020/1822/221/22/1生产管理人员想要

34、开发一个在正常时间(如果正常时间不够的话,就使用加班时间)内生产每一种产品数量的计划进度。目标是在满足合同规定的基础上,每月总生产和储存成本的最小。开始并没有库存,而且在三月结束后也不想有最终的存储。对这个问题进行描述并求解。13、研究一下拥有如下表所示参数表的运输问题。 目的地出发地相关成本(美元)供应1234123474864657174642631111需求1111(1)请解释为什么这个问题可以理解为一个指派问题。(2)画出这个问题的网络表示图。(3)用电子表格展示这个问题,并使用Excel求出最优解。14、考虑拥有如下所示成本表的指派问题(单位:美元): 工作人员相关成本(美元)123

35、ABC532763454最优解是A-3,B-1,C-2,总的成本是10美元。(1)画出这个问题的网络表示图。(2)在电子表格上对这个问题进行描述,并使用Excel得到最优解。15、考虑拥有如下所示的成本表的指派问题(单位:美元): 工作被指派者到每一个顾客的单位净利润(美元)1234ABCD8676658753457466(1)画出这个问题的网络表示图。(2)在电子表格上对这个问题进行描述,并使用Excel得到最优解。16、四艘货船要从一个码头向其他的四个码头运货(分别积为1、2、3、4)。每一艘船都能够运送到任何一个码头。但是,由于货船和货物的不同,装船、运输和卸货成本都有些不同。如下表所示

36、(单位:美元): 码头货船相关成本(美元)1234ABCD500600700500400600500400600700700600700500600600目标是要把这四个不同的码头指派给四艘货船,使总运输成本最小。(1)请解释为什么这个问题符合指派问题模型。(2)在电子表格中描述这个问题并求解。语文 数学 物理 化学张王李赵92 68 85 7682 91 77 6383 90 74 6593 61 83 7517、张、王、李、赵4位教师被分配教语文、数学、物理、化学4门课程,每位老师教一门课程,一门课程由一位老师教。根据这四位老师以往教课的情况,他们分别教这四门课程的平均成绩如下表:四位教师

37、每人只能教一门课,每一门课只能由一个教师来教,要确定哪一位教师上哪一门课,使四门课的平均成绩之和为最高。用Excel Solver求此指派问题的最优解。四、网络最优化问题1、运用贪婪算法,找出由下面的节点和供选择的边组成的网络的最小支撑树。每两个节点间的虚线代表备选边,虚线旁边的数字代表把这个边插入到网络中的成本(单位:千元)。2、速达(Speedy)航空公司中有一架班机将从西雅图直飞伦敦。由于天气因素的影响,在明确选择路线时存在一定的灵活性。下面的网络模型提供了所能考虑到的一些可能航线。节点SE与LN分别代表了西雅图与伦敦。其它节点分别代表不同的途经地点。SEFCEBLNDA4.63.54.74.23.43.63.23.63.53.33.43.83.4风力对于飞行的时间(以及燃油的耗用)是有很大影响的。根据最新的气象报道,各条航线飞行时间(以小时计算)标注在弧线上,因为燃油十分昂贵,速达(Speedy)航空公司的管理层,需要制定一套方案,选择飞行时间最短的航线。(1)在将此问题作为最短路问题时,什么代表路程?(2)为这一问题建立电子表格模型并求解。3、过纽约ALBANY的北南高速公路,路况通过能力如下图所示,图中弧上数字单位:千辆/小时,问该路段能否承受10000辆/小时的北南向流量压力?专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁