《2011年宁夏高考理科数学试题及答案-新课标(共11页).doc》由会员分享,可在线阅读,更多相关《2011年宁夏高考理科数学试题及答案-新课标(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2011年普通高等学校招生全国统一考试(宁夏卷)理科数学第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1复数的共轭复数是A B C D2下列函数中,既是偶函数哦、又在(0,)单调递增的函数是A B C D 3执行右面的程序框图,如果输入的N是6,那么输出的p是A120 B720 C1440 D50404有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A B C D5已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=A B C
2、D6在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为7设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,为C的实轴长的2倍,则C的离心率为A B C2 D38的展开式中各项系数的和为2,则该展开式中常数项为A-40 B-20 C20 D409由曲线,直线及轴所围成的图形的面积为A B4 C D610已知a与b均为单位向量,其夹角为,有下列四个命题 其中的真命题是A B C D11设函数的最小正周期为,且,则A在单调递减 B在单调递减C在单调递增D在单调递增12函数的图像与函数的图像所有交点的横坐标之和等于A2 B4 C6 D8第卷本卷包括必考题
3、和选考题两部分。第13题-第21题为必考题,每个试题考生都必须做答。第22题第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分。13若变量满足约束条件则的最小值为 。14在平面直角坐标系中,椭圆的中心为原点,焦点在 轴上,离心率为。过F1的直线交于C两点,且的周长为16,那么的方程为 。15已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。16在中,则的最大值为 。三、解答题:解答应写出文字说明,证明过程或演算步骤。17(本小题满分12分)等比数列的各项均为正数,且求数列的通项公式.设 求数列的前n项和.18(本小题满分12分)如图,四棱锥PABCD中,底面
4、ABCD为平行四边形,DAB=60,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。19(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110
5、频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元)求X的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20(本小题满分12分)在平面直角坐标系xOy中, 已知点A(0,-1),B点在直线上,M点满足,M点的轨迹为曲线C(I)求C的方程;(II)P为C上动点,为C在点P处的切线,求O点到距离的最小值21(本小题满分12分)已知函数,曲线在点处的切线方程为(I)求a,b的值;(II)如果当x0
6、,且时,求k的取值范围请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑22(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为的边AB,AC上的点,且不与的顶点重合已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程的两个根(I)证明:C,B,D,E四点共圆;(II)若,且求C,B,D,E所在圆的半径23(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线(I)求的方程;(II)在以O为极点,x轴的正半轴为极
7、轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.24(本小题满分10分)选修4-5:不等式选讲设函数,其中(I)当a=1时,求不等式的解集(II)若不等式的解集为x|,求a的值2011年普通高等学校招生全国统一考试理科数学试卷参考答案一、选择题(1)C (2)B (3)B (4)A (5)B (6)D(7)B (8)D (9)C (10)A (11)A (12)D二、填空题(13)-6 (14) (15) (16)三、解答题(17)解:()设数列an的公比为q,由得所以。由条件可知c0,故。由得,所以。故数列an的通项式为an=。()故所以数列的前n项和为(18
8、)解:()因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD. 故 PABD()如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,。设平面PAB的法向量为n=(x,y,z),则 即 因此可取n=设平面PBC的法向量为m,则 可取m=(0,-1,) 故二面角A-PB-C的余弦值为 (19)解()由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42()用B
9、配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,054,0.42,因此P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,即X的分布列为2240.040.540.42X的数学期望值EX=-20.04+20.54+40.42=2.68(20)解:()设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由题意可知(+)=0, 即(-x,-4-2y)(x,-2)=0.所以曲线C的方程式为y=x-2.()设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程
10、为,即。则O点到的距离.又,所以当=0时取等号,所以O点到距离的最小值为2.(21)解:()由于直线的斜率为,且过点,故即解得,。()由()知,所以。考虑函数,则。(i)设,由知,当时,。而,故当时,可得;当x(1,+)时,h(x)0从而当x0,且x1时,f(x)-(+)0,即f(x)+.(ii)设0k0,故 (x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,而h(1)=0,故当x(1,+)时,h(x)0,可得 h(x)1与0x1时,需证即 即需证 (1)设,则由x1得,所以在(1,+)上为减函数又因g(1)=0所以 当x1时 g(x)0 即(1)式成立同理0x1时,需证
11、 (2)而由0x1得,所以在(0,1)上为增函数又因g(1)=0所以 当0x1时 g(x)0 即(2)式成立综上所证,知要证不等式成立点评:抓住基本思路,去分母化简问题,不可死算(22)解:(I)连接DE,根据题意在ADE和ACB中, ADAB=mn=AEAC, 即.又DAE=CAB,从而ADEACB 因此ADE=ACB 所以C,B,D,E四点共圆。()m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GHAB, HFAC. HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为5(23)解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以 即 从而的参数方程为(为参数)()曲线的极坐标方程为,曲线的极坐标方程为。射线与的交点的极径为,射线与的交点的极径为。所以.(24)解:()当时,可化为。由此可得 或。故不等式的解集为或。() 由 得 此不等式化为不等式组 或即 或因为,所以不等式组的解集为由题设可得= ,故专心-专注-专业