《基于Fisher准则线性分类器设计说明书(共13页).doc》由会员分享,可在线阅读,更多相关《基于Fisher准则线性分类器设计说明书(共13页).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上基于Fisher准则线性分类器设计专业:电子信息工程学生姓名:李子龙学 号:7一、实验类型设计型:线性分类器设计(Fisher准则)二、实验目的本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher准则方法确定最佳线性分界面方法的原理,以及Lagrande乘子求解的原理。三、实验条件matlab软件四、实验原理线性判别函数的一般形式可表示成 其中 根据Fisher选择投影方向W的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W的函数为: 上面的公式是使用F
2、isher准则求最佳法线向量的解,该式比较重要。另外,该式这种形式的运算,我们称为线性变换,其中式一个向量,是的逆矩阵,如是d维,和都是dd维,得到的也是一个d维的向量。向量就是使Fisher准则函数达极大值的解,也就是按Fisher准则将d维X空间投影到一维Y空间的最佳投影方向,该向量的各分量值是对原d维特征向量求加权和的权值。以上讨论了线性判别函数加权向量W的确定方法,并讨论了使Fisher准则函数极大的d维向量 的计算方法,但是判别函数中的另一项尚未确定,一般可采用以下几种方法确定如或者 或当与已知时可用当W0确定之后,则可按以下规则分类,使用Fisher准则方法确定最佳线性分界面的方法
3、是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。五、实验内容已知有两类数据和二者的概率已知=0.6, =0.4。中数据点的坐标对应一一如下: 数据:x1 = 0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152
4、0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099x2 = 2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.2948 1.7714 2.3939 1.5648 1.9329 2.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.260
5、4x3 = 0.5338 0.8514 1.0831 0.4164 1.1176 0.5536 0.6071 0.4439 0.4928 0.5901 1.0927 1.0756 1.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548数据点的对应的三维坐标为x1 = 1.4010 1.2301 2.0814 1.165
6、5 1.3740 1.1829 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.7909 1.3322 1.1466 1.7087 1.5920 2.9353 1.4664 2.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414x2 = 1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 1.1405 1.0678 0.8050 1.2889
7、1.4601 1.4334 0.7091 1.2942 1.3744 0.9387 1.2266 1.1833 0.8798 0.5592 0.5150 0.9983 0.9120 0.7126 1.2833 1.1029 1.2680 0.7140 1.2446 1.3392 1.1808 0.5503 1.4708 1.1435 0.7679 1.1288x3 = 0.6210 1.3656 0.5498 0.6708 0.8932 1.4342 0.9508 0.7324 0.5784 1.4943 1.0915 0.7644 1.2159 1.3049 1.1408 0.9398 0.
8、6197 0.6603 1.3928 1.4084 0.6909 0.8400 0.5381 1.3729 0.7731 0.7319 1.3439 0.8142 0.9586 0.7379 0.7548 0.7393 0.6739 0.8651 1.3699 1.1458数据的样本点分布如下图:图 1:样本点分布图六、实验要求1) 请把数据作为样本,根据Fisher选择投影方向的原则,使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,求出评价投影方向的函数,并在图形表示出来。并在实验报告中表示出来,并求使取极大值的。用matlab完成Fisher线性分类器的
9、设计,程序的语句要求有注释。2) 根据上述的结果并判断(1,1.5,0.6)(1.2,1.0,0.55),(2.0,0.9,0.68),(1.2,1.5,0.89),(0.23,2.33,1.43),属于哪个类别,并画出数据分类相应的结果图,要求画出其在上的投影。3) 回答如下问题,分析一下的比例因子对于Fisher判别函数没有影响的原因。七、实验结果1、源代码x1=0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 . 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 . -0.5431 0.9407 -0.2126 0.05
10、07 -0.0810 0.7315 . 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 . 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 . 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099; y1=2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 . 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 . 1.8704 2.2948 1.7714 2.3939 1.5648 1.9329 . 2.2027 2
11、.4568 1.7523 1.6991 2.4883 1.7259 . 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 . 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604; z1=0.5338 0.8514 1.0831 0.4164 1.1176 0.5536 . 0.6071 0.4439 0.4928 0.5901 1.0927 1.0756 . 1.0072 0.4272 0.4353 0.9869 0.4841 1.0992 . 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275
12、. 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 . 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548; %存储第一类点 x2=1.4010 1.2301 2.0814 1.1655 1.3740 1.1829 . 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 . 1.2500 1.2864 1.2614 2.0071 2.1831 1.7909 . 1.3322 1.1466 1.7087 1.5920 2.9353 1.4664 . 2.9313 1.8349 1.8340 2.5
13、096 2.7198 2.3148 . 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414; y2=1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 . 1.1405 1.0678 0.8050 1.2889 1.4601 1.4334 . 0.7091 1.2942 1.3744 0.9387 1.2266 1.1833 . 0.8798 0.5592 0.5150 0.9983 0.9120 0.7126 . 1.2833 1.1029 1.2680 0.7140 1.2446 1.3392 . 1.1808 0.5503
14、1.4708 1.1435 0.7679 1.1288; z2=0.6210 1.3656 0.5498 0.6708 0.8932 1.4342 . 0.9508 0.7324 0.5784 1.4943 1.0915 0.7644 . 1.2159 1.3049 1.1408 0.9398 0.6197 0.6603 . 1.3928 1.4084 0.6909 0.8400 0.5381 1.3729 . 0.7731 0.7319 1.3439 0.8142 0.9586 0.7379 . 0.7548 0.7393 0.6739 0.8651 1.3699 1.1458; %存储第二
15、类点Pw1=0.6Pw2=0.4%求第一类点的均值向量m1m1x=mean(x1(:) %全部平均m1y=mean(y1(:) %全部平均m1z=mean(z1(:) %全部平均m1=m1x m1y m1z%求第二类点的均值向量m2m2x=mean(x2(:) %全部平均m2y=mean(y2(:) %全部平均m2z=mean(z2(:) %全部平均m2=m2x m2y m2z%求第一类类内离散矩阵S1S1=zeros(3,3)for i=1:36 S1=S1+(x1(i),y1(i),z1(i)-m1)*(x1(i),y1(i),z1(i)-m1)end%求第二类类内离散矩阵S2S2=zer
16、os(3,3)for i=1:36 S2=S2+(x2(i),y2(i),z2(i)-m2)*(x2(i),y2(i),z2(i)-m2)end%求总类内离散度矩阵SwSw=S1+S2%求向量W*W=(inv(Sw)*(m1-m2)%画出决策面x=0:.1:2.5y=0:.1:3X,Y=meshgrid(x,y)Z=(W(1)*X+W(2)*Y)/(-W(3)mesh(X,Y,Z)%保持hold on%透视决策面hidden off%求第一类样品的投影值均值Y1=0for i=1:36 Y1=Y1+W*x1(i),y1(i),z1(i)endM1=Y1/36%求第二类样品的投影值均值Y2=0f
17、or i=1:36 Y2=Y2+W*x2(i),y2(i),z2(i)endM2=Y2/36%选取阈值Y0Y0=(M1+M2)/2+(log(Pw1)/log(Pw2)/70%判定未知样品类别X1=1,1.5,0.6if W*X1Y0 disp(点X1(1,1.5,0.6)属于第一类) plot3(1,0.5,0.6,or)else disp(点X1(1,1.5,0.6)属于第二类) plot3(1,0.5,0.6,ob)endX2=1.2,1.0,0.55if W*X2Y0 disp(点X2(1.2,1.0,0.55)属于第一类) plot3(1.2,1.0,0.55,or)else dis
18、p(点X2(1.2,1.0,0.55)属于第二类) plot3(1.2,1.0,0.55,ob)endX3=2.0,0.9,0.68if W*X3Y0 disp(点X3(2.0,0.9,0.68)属于第一类) plot3(2.0,0.9,0.68,or)else disp(点X3(2.0,0.9,0.68)属于第二类) plot3(2.0,0.9,0.68,ob)endX4=1.2,1.5,0.89if W*X4Y0 disp(点X4(1.2,1.5,0.89)属于第一类) plot3(1.2,1.5,0.89,or)else disp(点X4(1.2,1.5,0.89)属于第二类) plot
19、3(1.2,1.5,0.89,ob)endX5=0.23,2.33,1.43if W*X5Y0 disp(点X5(0.23,2.33,1.43)属于第一类) plot3(0.23,2.33,1.43,or)else disp(点X5(0.23,2.33,1.43)属于第二类) plot3(0.23,2.33,1.43,ob)end2、 决策面图 2:决策面(红色代表第一类,蓝色代表第二类)3、 参数决策面向量W = -0.0798 0.2005 -0.0478阈值Y0 =0.1828样本点分类X1 = 1.0000 1.5000 0.6000点X1(1,1.5,0.6)属于第一类X2 = 1.2000 1.0000 0.5500点X2(1.2,1.0,0.55)属于第二类X3 = 2.0000 0.9000 0.6800点X3(2.0,0.9,0.68)属于第二类X4 = 1.2000 1.5000 0.8900点X4(1.2,1.5,0.89)属于第二类X5 = 0.2300 2.3300 1.4300点X5(0.23,2.33,1.43)属于第一类八、 实验分析1、 比例因子决策面向量W的比例因子并不影响判别函数。分析如下:阈值:判别函数:可以证明,Y0与WT有关,所以当改变WT时,判别函数两边同时改变,所以WT并不影响判别函数。九、实验截图专心-专注-专业