《人教版初中数学圆的专项训练及答案(共17页).doc》由会员分享,可在线阅读,更多相关《人教版初中数学圆的专项训练及答案(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上人教版初中数学圆的专项训练及答案一、选择题1如图,3个正方形在O直径的同侧,顶点B、C、G、H都在O的直径上,正方形ABCD的顶点A在O上,顶点D在PC上,正方形EFGH的顶点E在O上、顶点F在QG上,正方形PCGQ的顶点P也在O上若BC1,GH2,则CG的长为( )ABCD【答案】B【解析】【分析】【详解】解:连接AO、PO、EO,设O的半径为r,OC=x,OG=y,由勾股定理可知:,得到:x2+(x+y)2(y+2)222=0,(x+y)222=(y+2)2x2,(x+y+2)(x+y2)=(y+2+x)(y+2x)x+y+20,x+y2=y+2x,x=2,代入得
2、到r2=10,代入得到:10=4+(x+y)2,(x+y)2=6x+y0,x+y=,CG=x+y=故选B点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x的值,学会把问题转化为方程组,用方程组的思想去思考问题2如图,已知AB是O的直径,点C在O上,过点C的切线与AB的延长线交于点P,连接AC,若A=30,PC=3,则O的半径为()AB2CD【答案】A【解析】连接OC,OA=OC,A=30,OCA=A=30,COB=A+ACO=60,PC是O切线,PCO=90,P=30,PC=3,OC=PCtan30=,故选A3如图,
3、正方形ABCD内接于O,AB=2,则的长是()ABC2D【答案】A【解析】【分析】连接OA、OB,求出AOB=90,根据勾股定理求出AO,根据弧长公式求出即可【详解】连接OA、OB,正方形ABCD内接于O,AB=BC=DC=AD,AOB=360=90,在RtAOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,的长为=,故选A【点睛】本题考查了弧长公式和正方形的性质,求出AOB的度数和OA的长是解此题的关键4如图,在平面直角坐标系中,点P是以C(,)为圆心,1为半径的C上的一个动点,已知A(1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()A6B8C10D12【答案】
4、C【解析】【分析】设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可【详解】设P(x,y),PA2(x+1)2+y2,PB2(x1)2+y2,PA2+PB22x2+2y2+22(x2+y2)+2,OP2x2+y2,PA2+PB22OP2+2,当点P处于OC与圆的交点上时,OP取得最值,OP的最小值为COCP312,PA2+PB2最小值为222+210故选:C【点睛】本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大5下列命题中,是假命题的是A任意多边形的外角和为B在和中,若,则C在一个
5、三角形中,任意两边之差小于第三边D同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析【详解】解:A. 任意多边形的外角和为,是真命题;B. 在和中,若,则,根据HL,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义6如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则图中阴影部分的面积是( )ABCD【答案】A【解析】【分析】如图,连接CE图中S阴影S扇形BCES扇形BODSOCE根据
6、已知条件易求得OBOCOD4,BCCE8,ECB60,OE4,所以由扇形面积公式、三角形面积公式进行解答即可【详解】解:如图,连接CEACBC,ACBC8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,ACB90,OBOCOD4,BCCE8又OEAC,ACBCOE90在RtOEC中,OC4,CE8,CEO30,ECB60,OE4,S阴影S扇形BCES扇形BODSOCE=故选:A【点睛】本题考查了扇形面积的计算不规则图形的面积一定要注意分割成规则图形的面积进行计算7已知锐角AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)
7、分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN根据以上作图过程及所作图形,下列结论中错误的是( )ACOM=CODB若OM=MN,则AOB=20CMNCDDMN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得【详解】解:由作图知CM=CD=DN,COM=COD,故A选项正确;OM=ON=MN,OMN是等边三角形,MON=60,CM=CD=DN,MOA=AOB=BON=MON=20,故B选项正确;MOA=AOB=BON=20,OCD=OCM=80,MCD=160,又CMN=AON=20,MCD+CMN=180,MNC
8、D,故C选项正确;MC+CD+DNMN,且CM=CD=DN,3CDMN,故D选项错误;故选:D【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点8如图,四边形ABCD为O的内接四边形延长AB与DC相交于点G,AOCD,垂足为E,连接BD,GBC=50,则DBC的度数为()A50B60C80D90【答案】C【解析】【分析】根据圆内接四边形的性质得:GBC=ADC=50,由垂径定理得:,则DBC=2EAD=80【详解】如图,四边形ABCD为O的内接四边形,GBC=ADC=50AECD,AED=90,EAD=9050=40,延长AE交O于点MAOCD,DBC=2EAD
9、=80故选C【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题9从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()ABCD【答案】B【解析】【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案【详解】直径所对的圆周角等于直角,从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B故选B【点睛】本题考查了圆周角定理此题比较简单,注意掌握数形结合思想的应用10如图,是一块绿化带,将阴影部分修建为花圃.已知,阴影部分是的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).ABCD【答
10、案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到ABC为直角三角形,于是得到ABC的内切圆半径=1,求得直角三角形的面积和圆的面积,即可得到结论【详解】解:AB=5,BC=4,AC=3,AB2=BC2+AC2,ABC为直角三角形,ABC的内切圆半径=1,SABC=ACBC=43=6,S圆=,小鸟落在花圃上的概率= ,故选B【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.11如图,O的直径CD10cm,AB是O的弦,ABCD,垂足为M,OM:OC3:5,则AB的长为
11、()AcmB8cmC6cmD4cm【答案】B【解析】【分析】由于O的直径CD10cm,则O的半径为5cm,又已知OM:OC3:5,则可以求出OM3,OC5,连接OA,根据勾股定理和垂径定理可求得AB【详解】解:如图所示,连接OAO的直径CD10cm,则O的半径为5cm,即OAOC5,又OM:OC3:5,所以OM3,ABCD,垂足为M,OC过圆心AMBM,在RtAOM中,AB2AM248故选:B【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.12如图,点I是RtABC的内心,C90,AC3,BC4,将ACB平移使其顶点C与I重合,两边分
12、别交AB于D、E,则IDE的周长为()A3B4C5D7【答案】C【解析】【分析】连接AI、BI,根据三角形的内心的性质可得CAIBAI,再根据平移的性质得到CAIAID,ADDI,同理得到BEEI,即可解答.【详解】连接AI、BI,C90,AC3,BC4,AB5点I为ABC的内心,AI平分CAB,CAIBAI,由平移得:ACDI,CAIAID,BAIAID,ADDI,同理可得:BEEI,DIE的周长DE+DI+EIDE+AD+BEAB5故选C【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线13如图,在边长为8的菱形ABCD中,DAB=60,以点D为圆心,菱形的高DF为半径
13、画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是 ( )ABCD【答案】C【解析】【分析】由菱形的性质得出AD=AB=8,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积,根据面积公式计算即可【详解】解:四边形ABCD是菱形,DAB=60,AD=AB=8,ADC=18060=120,DF是菱形的高,DFAB,DF=ADsin60=,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积=故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键14如图,AB是O的直径,弦CDAB于
14、E点,若AD=CD= 则的长为()ABCD【答案】B【解析】【分析】根据垂径定理得到, ,A=30,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD,AB是O的直径,弦CDAB于E点,AD=CD= , ,A=30,DOE=60,OD=,的长=的长=,故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.15如图,点A、B、C、D、E、F等分O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案已知O的半径为1,那么“三叶轮”图案的面积为()A+B-CD【答案】B【解析】【分析】连接OA、OB、AB,作OHAB于H,
15、根据正多边形的中心角的求法求出AOB,根据扇形面积公式计算【详解】连接OA、OB、AB,作OHAB于H,点A、B、C、D、E、F是O的等分点,AOB=60,又OA=OB,AOB是等边三角形,AB=OB=1,ABO=60,OH=,“三叶轮”图案的面积=(-1)6=-,故选B【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键16若正六边形的半径长为4,则它的边长等于( )A4B2CD【答案】A【解析】试题分析:正六边形的中心角为3606=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4故选A
16、考点:正多边形和圆17如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为( )A45B50C55D60【答案】B【解析】【分析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结论【详解】四边形ABCD内接于O,ABC=105,ADC=180ABC=180105=75,BAC=25,DCE=BAC=25,E=ADCDCE=7525=50【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对
17、的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.18如图,AB 是O的直径,弦CDAB于点M,若CD8 cm,MB2 cm,则直径AB的长为( )A9 cmB10 cmC11 cmD12 cm【答案】B【解析】【分析】由CDAB,可得DM=4设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案【详解】解:连接OD,设O半径OD为R,AB 是O的直径,弦CDAB于点M ,DM=CD=4cm,OM=R-2,在RTOMD中,OD=DM+OM即R=4+(R-2),解得:R=5,直径AB的长为:25=10cm故选B【点睛】
18、本题考查了垂径定理以及勾股定理注意掌握辅助线的作法及数形结合思想的应用19我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图是等宽的勒洛三角形和圆形滚木的截面图. 图 图有如下四个结论:勒洛三角形是中心对称图形图中,点到上任意一点的距离都相等图中,勒洛三角形的周长与圆的周长相等使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是( )ABCD【答案】B【解析】
19、【分析】逐一对选项进行分析即可.【详解】勒洛三角形不是中心对称图形,故错误;图中,点到上任意一点的距离都相等,故正确;图中,设圆的半径为r勒洛三角形的周长= 圆的周长为勒洛三角形的周长与圆的周长相等,故正确;使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.20已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A60cm2B65cm2C120cm2D130cm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=,所以这个圆锥的侧面积=2513=65(cm2)故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了三视图专心-专注-专业
限制150内