《一次函数的概念--公开课获奖教案(共4页).doc》由会员分享,可在线阅读,更多相关《一次函数的概念--公开课获奖教案(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上19.2.2一次函数第1课时一次函数的概念专心-专注-专业1一次函数的定义及解析式的特点;(重点)2一次函数与正比例函数的关系(难点)一、情境导入1仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式2今年植树节,同学们种的树苗高约1.80米据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高3小徐的爸爸为小徐存了一份教育储蓄首次存入1万元,以后每个月存入500元,存满3万元止求存款数增长的规律几个月后可存满全额?以上3道题中的函数有什么共同特点?二、合作探究探
2、究点一:一次函数的定义【类型一】 辨别一次函数 下列函数是一次函数的是()Ay8xByCy8x22 Dy2解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误故选A.方法总结:一次函数解析式的结构特征:k0;自变量的次数为1;常数项b可以为任意实数【类型二】 一次函数与正比例函数 已知y(m1)x2|m|n3.(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?解析:(1)根据一次函数的定义,m10,2|m|1,据此求解即可;(2)根据正
3、比例函数的定义,m10,2|m|1,n30,据此求解即可解:(1)根据一次函数的定义得2|m|1,解得m1.又m10即m1,当m1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义得2|m|1,n30,解得m1,n3.又m10即m1,当m1,n3时,这个函数是正比例函数方法总结:一次函数解析式ykxb的结构特征:k0,自变量的次数为1,常数项b可以为任意实数正比例函数ykx的解析式中,比例系数k是常数,k0,自变量的次数为1.探究点二:根据实际问题求一次函数解析式【类型一】 列一次函数解析式 写出下列各题中y与x的函数关系式,并判断y是否是x的一次函数或正比例函数?(1)某村耕地
4、面积为106(平方米),该村人均占有耕地面积y(平方米)与人数x(人)之间的函数关系;(2)地面气温为28,如果高度每升高1km,气温下降5,气温x()与高度y(km)之间的函数关系解析:(1)根据人均占有耕地面积y等于总面积除以总人数得出即可;(2)根据高度每升高1km,气温下降5,得出285yx求出即可解:(1)根据题意得y,不是一次函数;(2)根据题意得285yx,则yx,是一次函数方法总结:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题需要注意的是实例中的函数图象要根据自变量的取值范围来确定【类型二】 确定一次函数解析式中系数的值 已知一次函数ykxb中
5、,当自变量x3时,函数值y5;当x4时,y9.求k和b的值解析:把两组对应值分别代入ykxb得到关于k、b的方程组,然后解方程组求出k和b.解:(1)当自变量x3时,函数值y5,当x4时,y9,解得方法总结:解决此类问题就是将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组解答即可三、板书设计1一次函数的定义2一次函数与正比例函数的区别和联系3根据实际问题求一次函数解析式在本节课的教学设计与教学实践中,不仅关注学生获得的知识,而且注重知识获得的过程和方法,同时关注学生的全面发展由于教学方法得当,教学过程设计合理,师生互动关系平等、和谐,所以能较好的完成知识传
6、授与促进学生发展的任务,在数学课堂教学改革的实践中取得较好的教学效果171勾股定理第1课时勾股定理1经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2掌握勾股定理,并运用它解决简单的计算题;(重点)3了解利用拼图验证勾股定理的方法(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形各组图形大小不一,但形状一致,结构奇巧你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理 如图,在ABC中,ACB90,AB13cm,BC5cm,CDAB于D,求:(1)A
7、C的长;(2)SABC;(3)CD的长解析:(1)由于在ABC中,ACB90,AB13cm,BC5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出SABC;(3)根据面积公式得到CDABBCAC即可求出CD.解:(1)在ABC中,ACB90,AB13cm,BC5cm,AC12cm;(2)SABCCBAC51230(cm2);(3)SABCACBCCDAB,CDcm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可【类型二】 分类讨论思想在勾股定理中的应用 在ABC中,A
8、B15,AC13,BC边上的高AD12,试求ABC的周长解析:本题应分ABC为锐角三角形和钝角三角形两种情况进行讨论解:此题应分两种情况说明:(1)当ABC为锐角三角形时,如图所示在RtABD中,BD9.在RtACD中,CD5,BC5914,ABC的周长为15131442;(2)当ABC为钝角三角形时,如图所示在RtABD中,BD9.在RtACD中,CD5,BC954,ABC的周长为1513432.当ABC为锐角三角形时,ABC的周长为42;当ABC为钝角三角形时,ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意【类型三】 勾股定理的证明
9、探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC绕其顶点A旋转90得直角三角形AED,所以BAE90,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于RtBAE和RtBFE的面积之和根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的RtBEA和RtACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于RtBAE和RtBFE的面积之和进行解答;方法2:根据ABC和RtACD的面积之和等于RtABD和BCD的面积之和解答解:方法1:S正方形ACFDS四边形ABFESB
10、AESBFE,即b2c2(ba)(ba),整理得2b2c2b2a2,a2b2c2;方法2:此图也可以看成RtBEA绕其直角顶点E顺时针旋转90,再向下平移得到S四边形ABCDSABCSACD,S四边形ABCDSABDSBCD,SABCSACDSABDSBCD,即b2abc2a(ba),整理得b2abc2a(ba),b2abc2aba2,a2b2c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理探究点二:勾股定理与图形的面积 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方
11、形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是_解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1S2S3,即S3251210.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积三、板书设计1勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2b2c2.2勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯加菲尔德拼图”、“毕达哥拉斯图”3勾股定理与图形的面积课堂教学中,要注意调动学生的积极性让学生满怀激情地投入到学习中,提高课堂效率勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点