《正方形的性质与判定学案(共4页).doc》由会员分享,可在线阅读,更多相关《正方形的性质与判定学案(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上正方形的性质学习目标1. 掌握正方形的概念、性质。 2. 运用正方形的性质进行有关的论证和计算。重点与难点重点:掌握正方形的概念、性质。 难点:运用正方形的性质进行有关的论证和计算。学习过程一、自学导航:(阅读教材P102-104,并完成以下题目)正方形菱形平行四边形矩形ABCD1、有一组_相等并且有一个角是_的平行四边形叫做正方形。有一个角是_的菱形叫做正方形;一组_相等的矩形叫做正方形。2、正方形既是_,又是_,所以它具有_ 和 _ 的性质:(1)正方形的四个角都是_ ,四条边都 _ ;(2)正方形的对角线_且 _,每条对角线平分_;(3)正方形是_图形,_的交点
2、是它的对称中心;(4)正方形是_图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴。如上图,画出该正方形的对称轴。3、如图见教材P103图367,正方形ABCD的对角线把它分成了_个三角形,它们是_三角形,它们全等吗?请简单说明理由_。二、问题探究(小组交流合作并展示归纳)1、正方形具有而一般菱形不具有的性质是 ( )A. 四条边都相等 B. 对角线互相垂直平分 C. 对角线相等 D. 每一条对角线平分一组对角2、正方形具有而一般矩形不一定具有的性质是 ( )A. 四个角相等 B. 四条边相等 C. 对角线互相平分 D. 对角线相等3、已知一个正方形的边长为2cm,则对角线长为
3、_。4、已知一正方形的对角线长为2cm,则它的边长为_。5、若正方形的一条对角线长为4cm,则正方形的周长为_,面积为_;对角线的交点到边的距离为_。6、顺次连接正方形各边中点,得4个等腰直角三角形,则每个小三角形的面积为原正方形面积的 _ 。ABCD7、如图,四边形ABCD是正方形,CAB是多少度?为什么?至少用两种方法说明理由。 三、效果检测1、正方形有哪些性质?(1)边的性质:_。(2)角的性质:_。(3)对角线的性质:_。2、正方形是轴对称图形,它的对称轴有_条,正方形也中心对称图形,它的对称中心是_。3、已知一正方形的对角线长为6cm,则它的边长为_。ABCDE4、选择题(1)正方形
4、的边和对角线构成的等腰直角三角形共有( )A、4个 B、6个 C、8个 D、10个(2)如图,在正方形ABCD中,DAE25,AE交对角线BD于E点,那么BEC等于( )A、45 B、60 C、70 D、75FDEABC(3)如图,在正方形ABCD中作等边AEF,则AFD的度数为( )A、40 B、75 C、50 D、555、如图,在正方形ABCD是,E为对角线AC上一点,连结EB、ED。(1)求证:BECDEC。ABCDEF(2)延长BE交AD于点F,若DEB140,求AFE的度数。、正方形的判定学习目标1. 掌握正方形的判定方法。 2. 运用正方形的性质和判定进行有关的论证和计算。重点与难
5、点重点:掌握正方形的判定方法。 难点:运用正方形的性质和判定进行有关的论证和计算。学习过程一、自学导航正方形的判定方法(1)有一组_的矩形是正方形。(2)有一个_的菱形是正方形。注:判定正方形的一般顺序:先证明它是平行四边形再证明它是菱形(或矩形)最后证明它是正方形。二、问题探究1、下列说法中错误的是( )A、对角线相等的菱形是正方形 B、有一组邻边相等的矩形是正方形C、四条边都相等的四边形是正方法 D、有一个角为直角的菱形是正方形2、已知四边形两对角线:互相垂直;相等;互相平分。具备条件_可得平行四边形;具备条件_可得矩形;具备条件_ 可得是菱形;具备条件_可得正方形。(填序号)3、已知四边
6、形ABCD是菱形,当满足条件_时,它成为正方形(填上你认为正确的一个条件即可).4、在RtABC中,ACB=90,CD平分ACB,DEBC,DFAC,垂足分别是E,F。求证:(1)四边形CFDE是平行四边形。(2)四边形CFDE是矩形或菱形(任选一项)。(3)四边形CFDE是正方形。三、效果检测1、在箭头上填上适当的条件矩形正方形正方形菱形( )( )2、在平行四边形ABCD中,对角线AC、BD相交于点O,当有_条件时,可判定它是正方形。3、下列判断正确的是( )A、四边相等的四边形是正方形 B、四个角相等的四边形是正方形C、对角线互相垂直的平行四边形是正方形 D、对角线互相垂直、平分且相等的四边形是正方形 4、如图,已知E、F、G、H分别是正方形ABCD四条边上的点,且AEBFCGDH。BCDEFGHA求证:四边形EFGH为正方形。5、如图,在正方形ABCD中,E是对角线AC上的一点,EFBC于F,EGCD于G。DCBAFGE(1)证明:四边形EFCG是正方形(2)如果AC6cm,AE2EC,求四边形EFCG的面积。专心-专注-专业