《电气工程及其自动化专业生产实习报告(共25页).doc》由会员分享,可在线阅读,更多相关《电气工程及其自动化专业生产实习报告(共25页).doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上电力系统及其自动化专业专业实习报告前言2011年7月,即将步入社会的我迎来了人生中的重要的时刻,为了适应社会的激烈竞争,学院组织我们在大学第三年的最后时间里,进行专业生产实习。想多积累工作经验的我早就迫不及待的想进行生产实习的历练了,我对未来10天的实习充满了渴望,想看看我是否能胜任社会工作。近些年来高等教育改革不断深化,专业生产实习作为教学与生产实际相结合的一门课程,重要性是十分特殊的。自我进入大学学习以来,特别是在进入大三后学习了许多的专业课程,对电气工程及其自动化专业有了一定了解,但是我对自己的工作经验不足感到担忧,担心自己是否能把理论和实际相结合起来做好实际的
2、工作。参加专业生产实习之后,我获得丰富的实践经验,学到了课本上学不到的知识,感谢生产实习。就此以自己在实习过程中的所学所思所想写下这篇报告。(三)实习目的与意义:专业生产实习是电气工程及其自动化专业的必修课程,安排在第三学年暑期短学期开设。该项实习是为了充分利用社会资源,增强电气工程及其自动化专业大学本科生的实践能力,实践的主要目的如下:1. 贯彻的好办法。以实际工作者的身份,直接参与生产过程,既可运用已有的知识技能,完成一定的生产任务,又可学习实际生产技术知识或管理知识,掌握生产技能,或培养管理能力,并且通过实习巩固、丰富与提高理论知识。 2. 对学生进行思想政治和的有效途径。在生产实习中,
3、可以具体生动地对学生进行劳动观点、爱护公共财物、组织性纪律性、职业道德等教育。 3. 检验教学质量的重要手段。通过生产实习,可以对学生专业知识、技能的实际水平,为社会主义建设服务的专业思想,社会主义劳动纪律与职业道德,以及的效果和思想工作,进行一次综合性的社会检验。4. 专业生产实习是全面推进素质教育、培养学生创新精神和实践能力的一种重要手段,是学生理论联系实际的一个重要环节,是大学生择业就业之前接触社会、了解社会的一次重要机会。5. 通过专业生产实习,使学生认识电力生产的整个过程,了解电气工程及其自动化专业的主要内容和发展方向,掌握专业的基本常识,为专业课程学习奠定感性认识,形成对本专业的认
4、同感、提高学生学习本专业的兴趣,激发学生的竞争意识、责任意识和开拓意识。6. 通过有组织的开放性专业生产实习活动。培养大学生自主管理、社会交往、互相帮助、独立完成任务等方面的综合能力。学生参加生产实习时将所学理论知识和实际工作紧密联系,巩固已学的理论知识,积累一定的实际生产技术和管理知识,培养运用理论知识解决工程实际问题的能力,注重知识创新和能力培养,为适应社会工作和生活打下坚实的基础。目 录前言 3目录 5第一章 实习内容简述6第二章 电力系统9第一节 电力系统的发展简史和我国电力系统概况9第二节 电力系统的基本组成及我国电力系统布局11第三节 供配电系统的常用电气设备12第四节 继电保护装
5、置在电力系统中的作用及常见故障13第五节 输配电新技术发展15第三章 牵引变电所16第一节 牵引变电所简介16第二节 牵引变电所主要设备17第三节 牵引变电所的运行管理18第四章 接触网18第一节 接触网零件、线索及绝缘子18第二节 接触网结构供电方式防干扰设施20第三节 碗臂及其装配22第四节 锚段及锚段关节22第五章 变压器26第一节 变压器的种类及其制造工艺26第二节 几种牵引变压器的原理分析28第六章 电气铁路发展史和我国电气化铁路29第一章 实习内容简述第二章 电力系统第一节 电力系统的发展简史和我国电力系统概况一、我国电力工业发展的现状 “十五”期间我国发电量由13685 亿千瓦时
6、增至24975 亿千瓦时,年均增长12.8%;发电装机容量由31932 万千瓦增至51718 万千瓦,年均增长10.1%。发电量的增速高于GDP 的增速,电力弹性系数1.35,高于前20 年的平均值(0.8)。单位产值电耗增加。 表1-1 2001-2006 年内我国GDP 及用电量增长情况 2001 年 2002 年 2003 年 2004 年 2005 年 2006 年全国GDP 增长率() 7.3 8 9.1 10.1 9.9 10.9全国用电量(万亿千瓦时) 1.47 1.64 1.89 2.18 2.48 2.82用电量增长率() 9.0 11.6 15.4 15.18 13.59
7、14.0全国装机容量(亿千瓦) 3.38 3.57 3.80 4.42 5.17 6.22资料来源:中国电力统计年鉴,中国电力出版社二、我国电力工业的特点及发展趋势1、电力需求和装机容量持续、快速增长。近年来,我国电力需求增长迅猛。尽管电力工业保持了2 位数的增长率,但仍然出现了大面积的电力短缺。今后1020 年,大陆每年平均新增装机将达30GW。2、电网在资源优化配置中将发挥重要作用,远距离输电规模宏大。由于资源状况、电力需求增长和技术条件的限制,今后相当长一段时间内,我国发电一次能源仍将主要依赖煤炭和水能。可开发水电资源近三分之二分布在西部的四川、云南、西藏三省区,煤炭保有储量的三分之二分
8、布在山西、陕西、内蒙三省区;而约占三分之二的用电负荷分布在沿海和京广铁路沿线以东的经济发达地区,这些地区发电能源资源严重不足。为解决发电资源分布与用电负荷分布极不均衡的矛盾,需要大容量、远距离的输电。根据目前的规划研究,到2020年,中远距离的输电规模将可能达到250GW 左右,其中2/3 以上的输电距离可能超过1000km。3、实现全国联网和跨国联网。电网庞大、复杂。目前,我国大陆电网除西北采用330kV/750kV 电压序列外,其它电网均采用220kV/500kV 电压序列。东北、华北和华中实现了同步联网,华中与西北、华东和南方电网通过直流实现联网,形成了北起东北伊敏、南抵四川二滩的链型同
9、步电网。随着电力工业的发展,我国电网将成为世界上最庞大、复杂和技术最先进的电网,其特征是:拥有世界上最大规模的电站三峡电站(最终装机将达2240万千瓦);世界上最大的电源基地西南水电基地(外送规模将达7000 万千瓦左右);拥有世界上平均海拔最高的750kV 电网;将建设百万伏级交流和800kV 直流输电工程,拥有当今世界上最高运行电压的交直流电网;将构成以特高压交直流为骨干网架的国家电网,形成世界上最大规模的远距离输电(通过特高压交直流电网传送的容量可能超过200GW);可能形成世界上规模最大的同步电网(华北华中华东同步电网);是世界上直流输电规模最大的国家(容量在1GW 以上的直流输电工程
10、有20 多个,比世界上此类规模的直流输电工程总和还多);形成国家、大区和省三级电力市场;按国家、大区、省、地(市)、县五级调度。4、自动化水平逐步提高、安全性和可靠性受到充分重视。先进的继电保护装置、变电站综合自动化系统、电网调度自动化系统以及电网安全稳定控制系统得到广泛应用。随着电网建设和网架结构的加强、电网自动化水平的提高,大陆电网安全稳定事故大幅下降。从上世纪70 年代的19 次/年,到80 年代下降为5.2 次/年,90 年代为2.7 次/年。1997 年以后,未发生主网稳定事故。电网供电可靠性也有较大提高,平均供电可靠性为99.820%。5、经济、高效和环保。随着大容量机组的应用、电
11、网的发展以及先进技术的广泛采用,煤耗与网损逐年下降。上个世纪九十年代以后,供电煤耗平均每年以 3.6g/kwh 的速度下降。到2004 年,供电煤耗为379 g/kWh,电网线损率为7.6。新建火电厂将广泛采用大容量、高效、节水机组,采用脱硫技术和控制NOX 的排放。到2020 年,在人口密集地区,将建设60GW 的天然气发电机组和40GW 的核电机组。在电网建设方面,将采用先进技术提高单位走廊输电能力、降低网损,加强环境和景观保护,城市电网将逐步提高电缆化率、推广变电站紧凑化设计。6、我国电力工业的产业政策是:大力发展水电,优化发展火电,加快发展核电,因地制宜地积极发展风电、太阳能等可再生能
12、源发电,加快发展电网。同时,坚持建设与节约并重,把节约用电放在优先位置,加强电力需求侧管理,提高资源利用效率;大力推进技术进步和产业升级,提高关键设备制造和供应能力。三、2020 年我国电源结构规划设想根据我国能源结构的状况,我国电源结构在相当长的时期内,直到2020 年都将以煤电为主,这是难以改变的。 (1)煤电发展。到2020 年约为6 亿kW,占总装机9.5 亿kW 的63.1%,发电址3 亿kWh,占总电量的70%,比2000 年火电装机的74.4%和电量的81%下降11 个百分点,平均每年下降0.5 个百分点;相应的发电量约3 亿kWh 需耗原煤约14 亿t,占2020 年原煤预计产
13、旦20亿一22 亿t 的64%-70%左右。 (2)水电发展。到2020 年水电要达到2 亿kw,占总装机容量的21.1%,电盘7000 亿kWh,占总电量的16%;抽水蓄能电站装机达到2500 万kW,占到总装机容量的2.6%,比2000 年装机比重的24.9%下降了1 个百分点,电量比重的17.8%下降1.8 个百分点。但水电开发率已由2000 年装机开发率的21%提高到2020 的53%,电量开发率相当由12.6%提高到36%,都超过目前世界平均水平。 (3)核电发展。到2020 年,规划核电容量约为4000 万kW,占总装机的4.2%,发电量的6%,比2000 年1.2%上升约5 个百
14、分点,使电源结构有所改善。我国核电起步不晚,发展缓慢。2000 年只有210 万kW,到2002 年末为370 万kW。在2020 年以内建设的4000 万kW 核电站,在技术路线上建议原则上仍坚持以原定的100 万级压水堆的路线,并充分吸取国际上的技术进步和改造的经验。具体堆型可在明确安全、经济及国产化率的条件下,通过国际标准来确定,并用以批量建设100 万级核电站。这是充分发挥现有核电制造能力和建设、管理方面的经验,尽快实现核电设备供应和建设、管理上的国产化的重要条件之一,是使我国核电”既安全,又经济”的可行路线。与此同时,还要在核电技术上加强开发研究,跟踪国际的先进技术,努力发展有自主知
15、识产权的新一代堆型的核电,争取在20 年内建设示范堆型,为20 年后批量过渡到新一代堆型做好技术供应的准备。 (4)气电发展。规划到2020 年燃气发电的容量达7000 万kW,占总装机容量的7.3%,电量约3000 亿kWh,占总电量的7%。这将使20 年内燃气轮机组的比重提高6 个百分点多,使电源结构得到一定程度的改善。 (5)新能源发电。规划到2020 年达到1500 万kW,占总装机的1.5%,发电皿400 亿kWh,占1%。新能源发电主要包括风力发电、潮汐发电和太阳能发电,也包括地热发电和垃圾、生物质能发电等。第二节 电力系统的基本组成及我国电力系统布局世界上大部分国家的动力资源和电
16、力负荷中心分布是不一致的。如水力资源都是集中在江河流域水位落差较大的地方,燃料资源集中在煤、石油、天燃气的矿区。而大电力负荷中心则多集中在工业区和大城市,因而发电厂和负荷中心往往相隔很远的距离,从而发生了电能输送的问题水电只能通过高压输电线路把电能送到用户地区才能得到充分利用。火电厂虽然能通过燃料运输在用电地区建设电厂,但随着机组容量的扩大,运输燃料常常不如输电经济。于是就出现了所谓坑口电厂,即把火电厂建在矿区,通过升压变电站、高压输电线、降压变电所(站)把电能送到离电厂较远的用户地区。随着高压输电技术的发展在地理上相隔一定距离的发电厂为了安全、经济、可靠供电需将孤立运行的发电厂用电力线路连接
17、起来。首先在一个地区内互相连接,再发展到地区和地区之间互相连接,这就组成统一的电力系统。图1-1 电力系统结构简图通常将发电厂、变电所、用电设备之间用电力网和热力网连接起来的整体,叫做动力系统。动力系统中的电气部分,即发电机、配电装置、变压器、电力线路及各种用电设备连接在一起组成的统一整体。称为电力系统。电力系统中由各级电压等级的输配电线路及升降压变电所组成的部分,称为电力网。在我国习惯将电力系统称作电网,例如华中电力系统称为华中电网。电力线路是电力系统的重要组成部分,它担负着输送和分配电能的任务。由电源向电力负荷中心输送电能的线路,称为输电线路或送电线路。送电线路的电压较高,一般在110kV
18、及以上。主要担任分配电能任务的线路,称为配电线路,配电电压较低,一般在35kV 及以下。为了研究和计算方便,通常将电力网分为地方电网和区域电网。电压在110kV 及以上、供电范围较广、输送功率较大的电力网,称为区域电力网。电压在110kV 以下、供电距离较短、输电功率较少的电力网,称为地方电力网。电压在610kV 的配电阿称为中压配电网。城市电网中35kV 的配电网亦称为中压配电网。电压为380220V 的配电网。称为低压配电网。但这种划分方式,其间井投有严格的界限。图1-2 电力系统结构简要图例根据电力网的结构方式,又分为开式电力网和闭式电力网。凡用户只能从单方向得到电能的电力网,称为开式电
19、力网;凡用户至少可以从两个或更多方向同时能得到电能的电力网,称为闭式电力网。根据电压等级的高低,电力网还可分为低压、高压、超高压几种。通常把1kV 以下的电力网称为低压电网,1220kV 的电力网称高压电网,330kV 及以上称超高压电网。第三节 供配电系统的常用电气设备一、供配电系统电气设备的定义供配电系统的电气设备是指用于发电、输电、变电、配电以及用电的所有设备,包括发电机、变压器、控制电器、保护设备、测量仪表、线路器材和用电负荷设备(如电动机、照明)等。二、供配电常用的高低压电气设备及其功能1、电力变压器主要用于公用电网和工业电网中,将某一给定电压值的电能转变为所要求的另一电压值的电能,
20、以利于电能的合理输送、分配和使用。2、互感器的作用是使二次设备与一次电路隔离和扩大仪表、继电器的使用范围。电流互感器二次额定电流一般为5A,电流互感器串联于线路中,有四种结线方式;在使用时要注意:二次侧不得开路,不允许装设开关或熔断器;二次侧有一端必须接地;注意端子的极性。电压互感器二次额定电压一般为100V,常用的电压互感器有单相和三相(五芯柱式)两类。电压互感器并联在线路中,通常接在母线上,有四种结线方式;电压互感器在使用时要注意:一、二侧均不得短路;二次侧有一端必须接地;注意端子的极性。3、熔断器分为高压熔断器和低压熔断器两种。高压熔断器有户内、户外两种类型,一般跌开式熔断器和负荷型跌开
21、式熔断器为“非限流”式。低压熔断器主要用于低压线路及设备的过载和短路保护,有插入式(RC 型)、螺旋式(RL 型)、无填料密闭管式(RM 型)、有填料封闭管式(RT 型)及引进技术生产的有填料管式gF、aM 系列和高分断能力的NT 型等。按保护性能也可分为有限流特性和无限流特性两种。4、高压开关设备主要有高压断路器、高压隔离开关、高压负荷开关等。高压断路器的作用是断开或接通负荷,故障时断开短路电流,有油断路器,真空断路器,SF6 断路器三种类型。高压隔离开关主要功能是隔离高压电源,保证人身和设备检修安全,它不能带负荷操作,常与断路器配合使用并装设在电源侧。高压负荷开关具有简单的灭弧装置,可以通
22、断一定的负荷电流和过负荷电流,由于断流能力有限,常与高压熔断器配合使用。5、低压开关设备主要有低压断路器、低压熔断器、低压刀开关等。低压断路器是一种能带负荷通断电路,又能在短路、过负荷、欠压或失压时自动跳闸的电气开关设备,低压断路器有万能式(框架结构)和塑壳式(装置式)两大类型,按安装方式分有抽屉式和固定式两种;按用途分有配电用、电动机保护、照明、漏电保护四种。6、避雷器是保护电力系统中电气设备的绝缘免受沿线路传来的雷电过电压或内部过电压损害的一种保护设备,有保护间隙、管型、阀型、金属氧化物等几种类型,在成套装置中氧化锌避雷器使用较为广泛。7、成套配电装置是制造厂成套供应的设备,在制造厂按照一
23、定的线路结线方案预先把电器组装成柜再运到现场安装。按电压高低可分为高压成套配电装置(也称高压开关柜)和低压成套配电装置(低压配电屏和配电箱)。高压开关柜有固定式和移开式两大类。固定式高压开关柜的柜内所有电器部件包括其主要设备如断路器、互感器和避雷器等都固定安装在不能移动的台架上,一般用在企业的中小型变配电所和负荷不是很重要的场所。新型固定式高压开关柜常用的有HXGN 系列(固定式高压环网柜)、XGN 系列(交流金属箱型固定式封闭高压开关柜)和KGN 系列(交流金属铠装固定式高压开关柜)等。手车式高压开关柜是将成套高压配电装置中的某些主要电器设备固定在可移动的手车上,它检修方便安全,恢复供电快,
24、供电可靠性高,但价格较高,主要用于大中型变配电所和负荷较重要、供电可靠性要求较高的场所,主要新产品有JYN 系列、KYN 等系列等。低压配电屏(柜)有固定式、抽屉式和混合式三种。固定式低压配电屏结构简单,价格低廉,目前使用较广的有PGL、GGL、GGD 等系列,适用于发电厂、变电所和工矿企业等电力用户作动力和照明配电用。抽屉式低压配电屏(柜)体积小、结构新颖、通用性好、安装维护方便、安全可靠,广泛应用于工矿企业和高层建筑的低压配电系统中作受电、馈电、照明、电动机控制及功率补偿之用,常用的抽屉式配电屏有BFC、GCL、GCK 等系列,它们一般用作三相交流系统中的动力中心(PC)和电动机控制中心(
25、MCC)的配电和控制装置。动力配电箱和照明配电箱是车间和民用建筑的供配电系统中对用电设备的最后一级控制和保护设备,分别用于动力配电、控制和照明、小型动力线路的控制、过负荷和短路保护。第四节 继电保护装置在电力系统中的作用及常见故障一、继电保护装置在供电系统中的作用电力系统的安全稳定运行是由继电保护系统来保证的,继电保护系统的可靠性又是由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证的。继电保护在电力系统安全运行中的作用主要有以下三点:1.保障电力系统的安全性。当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,
26、使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。2.对电力系统的不正常工作进行提示。反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。 3.对电力系统的运行进行监控。继电保护不仅仅是一个事故处理与反应装置,同时也是监控电力系统正常运行的装置。二、继电保护装置常见故障电压互感器二
27、次电压回路在运行中出现故障是继电保护工作中的一个薄弱环节。作为继电保护测量设备的起始点,电压互感器对二次系统的正常运行非常重要,PT 二次回路设备不多,接线也不复杂,但PT 二次回路上的故障却不少见。由于PT 二次电压回路上的故障而导致的严重后果是保护误动或拒动。据运行经验,PT 二次电压回路异常主要集中在以下几方面:PT 二次中性点接地方式异常;表现为二次未接地(虚接)或多点接地。二次未接地(虚接)除了变电站接地网的原因,更多是由接线工艺引起的。这样PT 二次接地相与地网间产生电压,该电压由各相电压不平衡程度和接触电阻决定。这个电压叠加到保护装置各相电压上,使各相电压产生幅值和相位变化,引起
28、阻抗元件和方向元件拒动或误动。PT 开口三角电压回路异常;PT 开口三角电压回路断线,有机械上的原因,短路则与某些习惯做法有关。在电磁型母线、变压器保护中,为达到零序电压定值,往往将电压继电器中限流电阻短接,有的使用小刻度的电流继电器,大大减小了开口三角回路阻抗。当变电站内或出口接地故障时,零序电压较大,回路负荷阻抗较小,回路电流较大,电压(流)继电器线圈过热后绝缘破坏发生短路。短路持续时间过长就会烧断线圈,使PT 开口三角电压回路在该处断线,这种情况在许多地区发生过。PT 二次失压;PT 二次失压是困扰使用电压保护的经典问题,纠其根本就是各类开断设备性能和二次回路不完善引起的。电流互感器是供
29、给继电保护和监控系统判别系统运行状态的重要组件。作为继电保护对电流互感器的基本要求就是电流互感器能够真实地反映一次电流的波形,特别是在故障时,不但要求反映故障电流的大小,还要求反映电流的相位和波形,甚至是反映电流的变化率。而传统的电磁式电流互感器是利用电磁感应原理通过铁心耦合实现一、二次电流变换的。由于铁心具有磁饱和特性,是非线性组件,当一次电流很大,特别是一次电流中非周期分量的存在将使严重饱和,励磁电流成几十倍、几百倍增加,而且含有大量非周期分量和高次谐波分量,造成二次电流严重失真,严重影响了继电保护的正确动作。由电工基础理论可知,电流互感器在严重饱和时,其一次电流中的直流分量很大,使其波形
30、偏于时间轴的一侧。铁心中有剩磁,且剩磁方向与励磁电流中直流分量产生的磁通方向相同,在短路电流直流分量剩磁的共同作用下,铁心在短路后不到半个周期就饱和了。于是,一次电流全部变为励磁电流,二次电流几乎为0。由于电流互感器严重饱和,使其传变特性变差甚至输出为0,才导致了断路器保护的拒动,引起主变压器后备保护越级跳闸。针对目前微机继电保护装置自身的特点,造成了微机保护装置故障一般有以下这些原因:电源问题,比如电源输出功率的不足会造成输出电压下降,若电压下降过大,会导致比较电路基准值的变化,充电电路时间变短等一系列问题,从而影响到微机保护的逻辑配合,甚至逻辑功能判断失误。尤其是在事故发生时有出口继电器、
31、信号继电器、重动继电器等相继动作,要求电源输出有足够的功率。如果现场发生事故时,微机保护出现无法给出后台信号或是重合闸无法实现等现象,应考虑电源的输出功率是否因元件老化而下降。对逆变电源应加强现场管理,在定期检验时一定要按规程进行逆变电源检验。干扰和绝缘问题,微机保护的抗干扰性能较差,对讲机和其他无线通信设备在保护屏附近使用,会导致一些逻辑元件误动作。微机保护装置的集成度高,布线紧密。长期运行后,由于静电作用使插件的接线焊点周围聚集大量静电尘埃,可使两焊点之间形成了导电通道,从而引起继电保护故障的发生。第五节 输配电新技术发展一、输电技术的发展前景输配电技术的应用范围涉及输配电系统的规划、设计
32、、施工、远行和维修各个领域。这些技术有的是现有成熟技术的延伸;有的是近年研究成功,接近商业化的新技术;有的则是面向未来长远需求正在研究。(一)三相高压交流输电仍是主流。目前,常规的三相高压交流输电在远距离输电工程中占主导地位,在未来相当长的时间内仍将是输电和联网的主要方式。商业化的交流输电工程最高电压为765 kV (800 kV 等级)。前苏联建成了900 km 的1150 kV 特高压输电线路并经过了试运行,后因多种原因降压为500 kV 运行。 (二)高压直流输电日显重要。端对端直流输电这是一种成熟的远距离输电技术。从1954年到1998 年,全球己建成57 个直流输电工程,10 项正在
33、建设中。巴西伊泰普输电工程直流部分是世界上最大的直流输电工程,电压为士600 kV。这些工_程在远距离输电、电网互联、跨海送电等方面发挥了重要作用。中国建成了士500kV 葛洲坝一上海输电工程、天一广直流输电工程。三峡一华东的直流输电工程正在建设中。贵州一广东、三峡一广东的直流输电工程的建设业已启动。预计端对端直流输电在未来仍是远距离输电和联网的重要方式。 (三)灵活交流输电方兴未艾。灵活交流输电(FACTS)是基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压、相位实施灵活快速调节的输电技术。它可以用来对系统的有功和无功潮流进行灵活控制,以达到大幅度提高线路输送能力、阻尼系统振荡、提高
34、系统稳定水一平的目的。 (四)输电线路发展趋势。1.紧凑型线路。紧凑型线路是指用增加分裂导线数、缩短相间距离、合理排列相导线等措施以降低线路波阻抗,从而提高线路输送能力的输电线路。紧凑型输电线路可视为用改变线路的几何结构的方法实现线路“自然的补偿”的一种线路。研究紧凑型输电线路的主要目标是提高线路的输送能力,节省线路走廊。近年来国内外研究的优化导线和杆塔结构以减少线路产生的电磁场的环境影响的线路、在城市中为改善景观而紧凑化的线路也常归入紧凑型线路的范畴。导线和杆塔结构不作重大改动的一般的紧凑型输电线路,输送能力比常规线路可以提高20-30%。2.气体绝缘线路。气体绝缘输电线路(GIL)是以六氟
35、化硫气体绝缘的、带有与导线同轴的接地金属外壳的输电线路,与电缆相比,其优点是绝缘击穿后可恢复、承载电流大。它可沿地面敷设,也可在地下敷设。气体绝缘的输电线已在水力发电厂的出线等场合得到应用。在沙特阿拉伯建设了一条总长17 km 的420 kV GILo 1997 年投运。日本中部电力公司安装了一条275kV 3.3 公里的GIL, 1998 年投运,输电1300MW,应用强迫冷却后可送2850MW。未来,由于架空输电线路的造价日增,输电线路走廊的获得越来越困难,气体绝缘的输电线的研究和开发受到重视。据预测,对大容量(1000 MW 以上)输电,G 工L 在线路走廊昂贵的地方可以与架空输电线路竞
36、争。3.超导输线路。超导输电是一种低损耗的输电方式。由于输电电压低,电场影响很小。电缆的同轴结构和三相同管道,使磁场的影响也不大。故超导输电是一种与环境协调的高效输配电方式。YBCO-123 超导体的临界电流密度己达l00kA/cm2 的数量级。利用原来的电缆管道,安装超导电缆可满足大城市供电增容的需要。利用原来的电缆管道,安装超导电缆可满足大城市供电增容的需要。目前,超导电缆的价格很高,冷冻系统的可靠性有待检验,用于长距离输电工程的前景尚不明朗。第三章 牵引变电所第一节 牵引变电所简介将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接
37、触网两大部分组成。牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网,接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。 牵引变电所是铁路的专用。牵引变电所把区域送来的电能,根据电力牵引对电流和电压的不同要求,转变为适用于电力牵引的电能,然后分别送到沿铁路线上空架设的,为供电,或者送到地下铁道等城市交通所需的供电系统,为或供电。一条电气化铁路沿线设有多个牵引变电所,相
38、邻变电所间的距离约为4050公里。在长的电气化铁路中,为了把高压输电线分段以缩小故障范围,一般每隔200250公里还设有支柱牵引变电所,它除了完成一般变电所的功能外,还把高压电网送来的电能,通过它的母线和输电线分配给其他中间变电所。牵引变电所的任务是将系统三相电压降低,同时以单相方式馈出。降低是由来实现的,将三相变为单相是通过变电所的电气接线来达到的。牵引(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。随着技术水平的提高,我国干线已推广使用集中监视及控制的远动系统,直接由供电调度实行遥控运行将从电力系统传送给电力机车的电力装置的总称叫
39、电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。牵引供电回路是由牵引变电所馈电线接触网电力机车钢轨回流联接(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。通常
40、将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。第二节 牵引变电所主要设备(1)主接线 牵引变电所的主接线可分为电气主接线和二次接线两部分。电气主接线是指牵引变电所内一次设备(生产、变换、输送、分配和使用电能的设备)的连接方式,也是变电所接受电能、变压和分配电能的通路。它反映了牵引变电所的基本结构和功能。二次接线是指牵引变电所内二次
41、设备(对一次设备和系统的运行状态进行测量、控制、监视和保护的设备)的连接方式。二次接线对一次接线的安全运行起着重要作用。电气主接线的基本形式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线分段接线、双母线分段带旁路母线接线、一台半断路器接线、桥式接线及分支接线等。(2)变压器牵引变电所内的变压器,根据用途不同,分为主变压器(牵引变压器)、自耦变压器(AT)、所用变压器几种;根据结线方式不同,又有单相变压器、三相变压器、三相-二相变压器等。尽管变压器的类型、容量、电压等级千差万别,但其基本原理都是一样的,其作用都是变换电压,传输电能,以供给不同的电负荷。主变压器是牵引
42、变电所内的核心设备,担负着将电力系统供给的三相110kV(或单相220kV)的电源变换成适合电力机运用的27.5kV的单相电。由于牵引负荷具有极度不稳定、短路故障多、谐波含量大等特点,运行环境比一般电力负荷恶劣的多, 因此要求牵引变压器过负荷和抗短路冲击的能力要强,这也是牵引变压器区别于一般电力变压器的特点。自耦变压器(AT)是AT供电的专用变压器,自身阻抗很小,一般沿牵引网每1020km设一台,用以降低线路阻抗,提高网压水平及减少通信干扰。所用变压器(又称自用电变压器)是给本所的二次设备、检修设备以及日常生活、照明负荷供电的设备,电压一般为27.5/0.4kV或27.5/0.23kV,容量从
43、几十kVA至几百kVA不等。(3)断路器断路器依靠本身所具有的强大的灭弧能力,不但可以带负荷切断各种电气设备和牵引网线路,更可与保护装置配合,快速、可靠地切断各种短路故障。它是牵引变电所内最为重要的电气设备之一,其工作最为繁重,地位最为关键结构最为复杂。牵引变电所目前应用最多的有少油断路器、六氟化硫断路器、压缩空气断路器和真空断路器等几种,各种断路器的区别主要在于所用的灭弧介质不同,如少油断路器采用变压器油作为绝缘和灭弧介质、六氟化硫断路器使用六氟化硫气体(SF6)作为绝缘和灭弧介质,真空断路器则使用真空作为绝缘和灭弧介质等,由于灭弧介质不同,断路器的结构自然有所差别。(4)隔离开关隔离开关,
44、是一种在需要时将电气设备、线路与电源隔离开来的开关设备,具有明显可见的、距离足够的断口,它不带灭弧装置,不能开、合负荷电流和短路电流,具体作用为:将需要停电的设备、线路与电源可靠隔离,以保证检修工作的安全。改变供电方式,如110kV进线互投、牵引侧高压母线的分段运行或并联运。开、合小电流电路如电压互感器、避雷器及小容量的空载变压器等。(5)互感器牵引变电所内仅有变压器、开关等变、配电设备是远远不能满足安全、可靠、高效供电等要求的,还需要用二次设备将其有效的监控、保护起来,因此,就需要一种变换装置将主设备中的电气参数传递给二次设备,如仪表、继电器等。这种将高电压、大电流变换成低电压、小电流的设备
45、就是互感器,变换电压的设备叫电压互感器,变换电流的设备叫电流互感器。互感器作用将高电压、大电流变换成低电压、小电流,以供仪表、继电器等二次设备使用。将高电压与低电压可靠地隔离开来,以保障二次设备及人身的安全。将电压互感器二次输出电压统一规定为100V,电流互感器二次输出电流统一规定为5A,便于设备设计和制造的标准化,并降低生产成本,牵引变电所等级一般为1.5级。(6)高压熔断器作为结构简单的保护电器,高压熔断器通常用于保护功率较小和对保护性能要求不高的场合。它可以在过载或短路故障时单独断开电路,达到保护设备目的,也可与负荷开关配合,组成“F-C”接线。常用的高压熔断器可分为限流式(如牵引变电所
46、中用于保护电压互感器的熔断器)与跌落式两类。(7)并联电容补偿装置电力系统的电力负荷有功负荷和无功负荷,前者做功后者不做功。对电力系统来说,其供电能力即容量是一定的,为有功功率和无功功率之和,无功份量所占比重大了,势必造成有功输出减少、降低电力系统的容量和利用率,对经济运行极为不利。因此总希望无功份量越小越好,并引入一个衡量指标,即有功负荷所占总负荷的比值。牵引用电为感性负荷,利用感性负载和容性负载相位相反,互相抵消的原理,牵引变电所采用了并联电容补偿装置,以弥补牵引负荷带来的无功损失。该套装置并接在牵引侧高压母线上,由数个电容器串、并连接成组,再与电抗器串联而成。由于电容器具有过电压、电流能力较差,断电后有残压,合闸送电会产生过电压和涌流等特性,装设有避雷器、熔断器、放电线圈和电抗器等加以保护。电容器与电抗器是并联补偿装置的主要设备。第三节 牵引变电所的运行管理牵引变电所运行分值班、巡视、倒闸。值班人员为值班员与助理值班员2人。巡视,值班人员当班时,不少于1次,夜间熄灯巡视每周不少于1次。所有倒闸作业均必须有2人同时进行,助理值班员操作,值班员监护。凡属电力调度下令倒闸设备,倒闸前要由值班员向电力调度提出申请