《小学五年级奥数思维训练全集精编版(共57页).doc》由会员分享,可在线阅读,更多相关《小学五年级奥数思维训练全集精编版(共57页).doc(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上专题1 平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。 平均数=总数量总份数 总数量=平均数总份数 总份数=总数量平均数例1:有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?分析:1箱苹果1箱梨1箱橘子=423=136(个);:1箱桃1箱梨1箱橘子=363=108(个):1箱苹果1箱桃=372=74(个)由、可知:1箱苹果比1箱桃多126108=18(个),再根据等式,用和差关系求出:1箱桃有(7418)2=28(个),1箱苹果有28
2、18=46(个)。试一试1:甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?例2:某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?分析:原来三个数的和是23=6,后来三个数的和是33=9,9比6多出了3,是因为把那个数改成了4。因此,原来的数应该是43=1。试一试2:有五个数,平均数是9。如果把其中的一个数改为1,那么这五个数的平均数为8。这个改动的数原来是多少?例3:五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了
3、。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?分析:98分比89分多9分。多算9分就能使全班平均每人的成绩上升91.791.5=0.2(分)。9里面包含有几个0.2,五一班就有几名同学。试一试3:某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。全班有多少同学?专题2 平均数(二)专题简析:平均数=总数量总份数 总数量=平均数总份数 总份数=总数量平均数例1:小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?分析:每次应多考:8684=2(分)。100分比8
4、6分多14分,14里面有7个2分,所以,前面已经测验了7次,这是第8次测验。试一试1:一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?例2:小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,语文、英语两科平均分84分,英语比语文多10分。小亮的各科成绩是多少分?分析:因为语文、英语两科平均分84分,即语文英语=168分,而英语比语文多10分,即英语语文=10分,所以,语文:(16810)2=79分,英语是7910=8
5、9分。又因为政治、英语两科平均86分,所以政治是86289=83分;而政治、数学两科平均分91.5分,数学:91.5283=100分;最后根据五科的平均成绩是89分可知,自然:895(798983100)=94分。试一试2:甲、乙、丙三个数的平均数是82,甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?例3:两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?分析:用往返的路程除以往返所用的时间就等于往返两地的平均速度。顺水速度=36010=36(千米)是,顺水速度=汽艇的静水速
6、度与水流速度的和,所以,静水速度是366=30(千米)。而逆水速度=静水速度水流速度,所以汽艇的逆水速度是306=24(千米)。逆水行全程时所用时间是36024=15(小时),往返的平均速度是3602(1015)=28.8(千米)。试一试3:一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?例4:幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?分析:只要知道了大、小班小朋友分得的平均数,再乘(3020)人就
7、能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多230=60(块),这60块平均分给20个小班的小朋友,每人可得6020=3(块)。因此,大、小班小朋友分得平均块数是103=13(块)。一共分掉13(3020)=650(块)。试一试4:两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?例5:王强从A地到B地,先骑自行车行完全程的一半,每小时行12km。剩下的步行,每小时走4km。王强行完全程的平均速度是每小时多少km?分析:求行完全程的平均速度,应该用全程除以行全程所用的时间。由
8、于题中没有告诉我们A地到B地间的路程,我们可以设全程为24km(也可以设其他数),这样,就可以算出行全程所用的时间是1212124=4(小时),再用244就能得到行全程的平均速度是每小时6km。试一试5:运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。专题3 长方形、正方形的周长专题简析:长方形的周长=(长宽)2,正方形的周长=边长4。表面上看起来不是长方形或正方形的图形的周长,需灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。例1:有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米
9、的正方形,重叠的部分为边长的一半,求重叠后图形的周长。分析:根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。因此,所求周长是184=72厘米。试一试1:下图由8个边长都是2厘米的正方形组成,求这个图形的周长。例2:一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?分析: 把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是19244=176(平方厘米)。把A和B移到一起拼成一个宽4厘米的长方形,而此长方形的长就
10、是这块木板剩下部分的周长的一半。1764=44(厘米),现在这块木板的周长是442=88(厘米)。试一试2:有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。求这个正方形的周长。例3 已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?分析:从图中可以看出,整个图形的周长由六条线段围成,其中三条横着,三条竖着。三条横着的线段和是(ab)2,三条竖着的线段和是b2。所以,整个图形的周长是(ab)2b2,即2a4b。试一试3:有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长。
11、例4:如下图,阴影部分是正方形,DF=6厘米,AB=9厘米,求最大的长方形的周长。分析:根据题意可知,最大长方形的宽就是正方形的边长。因为BC=EF,CF=DE,所以,ABBCCF=ABFEED=96=15(厘米),这正好是最大长方形周长的一半。因此,最大长方形的周长是(96)2=30(厘米)。试一试5:下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)专题4 长方形、正方形的面积专题简析:长方形的面积=长宽,正方形的面积=边长边长。当已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目时。要利用“割补”、“平移”、“旋转”等方法
12、,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。例1:已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。求大、小正方形的面积各是多少平方厘米?分析:从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。求到了小正方形的边长,计算大、小正方形的面积就非常简单了。试一试1:有一块长方形草地,长20米,宽15米。在它的四周向外筑一条宽2米的小路,求小路的面积。 例2:一个大长方形被两条平行
13、于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。分析:因为AECE=6,DEEB=35,把两个式子相乘AECEDEEB=356,而CEEB=14,所以AEDE=35614=15。试一试2:下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。例3:把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?分析:我们可以把小正方形移至大正方形里面进行分析。两个正方形的面积差40平方分米就是图中的A和B两部分,如图。如果把B
14、移到原来小正方形的上面,不难看出,A和B正好组成一个长方形,此长方形的面积是40平方分米,长20分米,宽是4020=2(分米),即大、小两个正方形的边长相差2分米。因此,大正方形的边长就是(20+2)2=11(分米),面积是1111=121(平方分米)试一试3:有一个正方形草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米。求草坪的面积。 例4:有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。分析:由于不知道正方形的边长和面积,所以,也没有办法计算出所画正方形的边长或面积。我们可以利用两个正方形之间的关系进行分析。以正方形的四条边为准,分别作出4个等腰直角三角形,如
15、图中虚线部分,显然,虚线表示的正方形的面积就是原正方形面积的2倍。试一试4:四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49m2和4m2,求其中一个长方形的宽。例5: 有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的。一个正方形的面积是多少平方厘米?分析:三个同样大小的正方形拼成的长方形,它的周长是原正方形边长的8倍,正方形的边长为728=9(厘米),一个正方形的面积就是99=81(平方厘米)。试一试5:五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?专题5 尾数和余数专题简析:自然数末位的数
16、字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。例题1:写出除213后余3的全部两位数。分析:因为213=2103,把210分解质因数:210=2357,所以,符号题目要求的两位数有25=10,27=14,35=15,37=21,57=35,235=30,237=42,一共有7个两位数:10、14、15、21、35、30、42。试一试1:178除以一个两位数后余数是3,适合条件的两位数有哪些?例题2: (1)125125125125100个25积的尾数是几?(2)(2126)(2126)(2126)10
17、0个(2126)积的尾数是几?分析:(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6。因为个位6乘6,积的个位仍然是6,所以不管多少个(2126)连乘,积的个位还是6。试一试2:1.51.51.51.5200个1.5积的尾数是几?(1263)(1263)(1263)(1263)1000个(1263)积的尾数是几?例题3:999951个9积的个位数是几?分析:我们在计算乘法时会发现:对“积的个位”有影响的是“因数中的个位”,只要找到“个位乘个位时积的变化规律”就可以了。因数中个位的数量 积的个位 1个9 9 2个9 1 3个9
18、9积的尾数以“9、1”两个数字在不断重复出现。512=251,余数是1,说明51个9本乘积的个位是9。试一试3:(1)242424242001个24,积的尾数是多少?(2)1239899,积的尾数是多少?(提示:任何数和0相乘积都是0)例题4: 把1/7化成小数,那么小数点后面第100位上的数字是多少?分析: 因为1/70.7,化成的小数是一个无限循环小数,循环节“”共有6个数字。由于1006=164,所以,小数点后面的第100位是第17个循环节的第4个数字,是8。试一试4:把1/11化成小数,求小数点后面第2001位上的数字。专题6 一般应用题(一)专题简析:在分析应用题的数量关系时:(1)
19、可以从条件出发,逐步推出所求问题(综合法);(2)可以从问题出发,找出必须的两个条件(分析法)。实际解时,根据题中的已知条件,灵活运用这两种方法。例1:某车间按计划每天应加工50个零件,实际每天加工56个零件。这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。这个车间实际加工了多少个零件?分析:如果按原计划的天数加工,加工的零件就会比原计划多563120=288(个)。为什么会多加工288个呢?是因为每天多加工了5650=6(个)。因此,原计划加工的天数是2886=48(天),实际加工了5048120=1520(个)零件。试一试1:小明骑车上学,原计划每分钟行200米,正
20、好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。他家离学校有多远?例2:甲、乙二人加工零件。甲比乙每天多加工6个零件,乙中途停了15天没有加工。40天后,乙所加工的零件个数正好是甲的一半。这时两人各加工了多少个零件?分析:甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多。由于甲每天比乙多加工6个,20天一共多加工620=120(个)。这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120(25-20)=24(个)。乙一共加工了2425=600(个),甲一共加工了
21、6002=1200(个)试一试2:甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?例3:服装厂要加工一批上衣,原计划20天完成任务。实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。原计划加工上衣多少件?分析:由于每天比计划多加工60件,15天就比原计划的15天多加工6015=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(2015)天中的工作量。所以,原计划每天加工上衣(900350)(2015)=110(件),原计划加工11020=220
22、0(件)。试一试3:汽车从甲地开往乙地,原计划10小时到达。实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千米。甲、乙两地相距多少千米?例4:王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5在完成任务。王师傅一共做了多少个零件?分析:按实际做法再做5天,就会超产(6020)5=400(个)。为什么会超产400个呢?是因为每天多生产了20个,400里面有几个20,就是原计划生产几天。40020=20(天),因此,王师傅一共做了6020=1200(个)零件。试一试4:造纸厂生产一批纸,计划每天生产13.5吨,实际每天比原计划多生产1.5吨,结果提前2.5天完成了
23、任务。实际用了多少天?专题7 一般应用题(二)专题简析:较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。例1:工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?分析:因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(3525)根短管子的长度。因此,每根短管子的长度就是50(3525)=5(米),这段排水管道的长度应是535=175(米)
24、。试一试1:一班的小朋友在操场上做游戏,每组6人。玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。参加游戏的小朋友一共有多少人?例2:甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。结帐时,甲和乙都要付给丙24元,每千克苹果多少元?分析:三人拿同样多的钱买苹果应该分得同样多的苹果。2423=16(千克),也就是丙少拿16千克苹果,所以得到242=48元。每千克苹果是4816=3(元)。试一试2:春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平均分了这些面包,而小红分别给了小明和小军各2.2元钱。每个面包多少元
25、?例3:甲城有177吨货物要跑一趟运到乙城。大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。用多少辆大卡车和小卡车来运输时耗油最少?分析:大汽车一次运5吨,耗油10升,平均运1吨货耗油105=2(升);小汽车一次运2吨,耗油5升,平均运1吨货耗油52=2.5(升)。显然,为耗油量最少应该尽可能用大卡车。1775=35(辆)2吨,余下的2吨正好用小卡车运。因此,用35辆大汽车和1辆小汽车运耗油量最少。试一试3:用1元钱买4分、8分、1角的邮票共15张,那么最多可以买1角的邮票多少张?例4:有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北
26、京日报34份,江海晚报30份,电视报22份。那么订江海晚报和电视报的共有多少家?分析:这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有862=43家。在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。试一试4:五(1)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了三种水果,其中苹果40个,梨32个,桔子26个。那么,带梨和桔子的有多少个同学?例5:一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已进水800桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完。每分钟进水多少桶?分析:50分钟
27、内,两台抽水机一共能抽水(1814)50=1600(桶)。1600桶水中,有800桶是开始抽之前就漏进的,另800桶是50分钟又漏进的,因此,每分钟漏进水80050=16(桶)。试一试5:一个水池能装8吨水,水池里装有一个进水管和一个出水管。两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?专题8 一般应用题(三)专题简析:解答一般应用题时,可以按下面的步骤进行:1,弄清题意,找出已知条件和所求问题;2,分析已知条件和所求问题之间的关系,找出解题的途径;3,拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。例1
28、:甲、乙两工人生产同样的零件,原计划每天共生产700个。由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。甲、乙原计划每天各生产多少个零件?分析:二人实际每天比原计划多生产1020700=320(个)。这320个零件中,有100个是甲多生产的,那么320100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700220=480(个)。试一试1:甲、乙两人生产同样的零件,原计划每天共生产80个。由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。甲、乙原计划每天各生产多少个零件?例2:把一根竹竿插入水
29、底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。求竹竿的长。分析:因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是402=80(厘米)。这时,湿的部分比它的一半长13厘米,说明竹竿的长度是(8013)2=134(厘米)。试一试2:有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。这根铁丝原来长多少厘米?例3:将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?分析:设这15段中有X段是8米长的,则有(15X)段是5米长的
30、。然后根据“8米的总长度比5米的总长度多3米”列出方程,并进行解答。试一试3:食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?例4:甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。又同时加工4小时后,甲总共加工的零件反而比乙多4200个。甲、乙每小时各加工零件多少个?分析:(1)在后4小时内,甲一共比乙多加工了4200+400=4600(个)零件,甲每小时比乙多加工46004=1150个零件。 (2)在前4小时内,甲实际只加工了42.5=1.5小时,甲1.5小时比乙1.5小
31、时应多做11501.5=1725个零件,因此,1725400=2125个零件就是乙2.5小时的工作量,即乙每小时加工21252.5=850个,甲每小时加工8501150=2000个。试一试4:师徒二人生产同一种零件,徒弟比师傅早2小时开工,当师傅生产了2小时后,发现自己比徒弟少做20个零件。二人又生产了2小时,师傅反而比徒弟多生产了10个。师傅每小时生产多少个零件?例5:加工一批零件,单给甲加工需10小时,单给乙加工需8小时。已知甲每小时比乙少做3个零件,这批零件一共有多少个?分析:因为甲每小时比乙少做3个零件,8小时就比乙少做38=24(个)零件,所以,24个零件就是甲(108)小时的工作量
32、。甲每小时加工24(108)=12(个),这批零件一共有1210=120(个)。试一试5:快、慢两车同时从甲地开往乙地,行完全程快车只用了4小时,而慢车用了6.5小时。已知快车每小时比慢车多行25千米。甲、乙两地相距多少千米?专题九 周期问题专题简析:周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。周期问题解答步骤和技巧(1)先确定1个周期里有几个对象。(2)总数周期里的对象数=周期数余数(3)没有余数最后1个对象就是周期里的最后1个对象。有余数,余几最后1个对象就是周期里的第几个对象。例题1:将奇数如下图排列,各列分别用A、B、C、D、E为代
33、表,问:2001所在的列以哪个字母为代表?A B C D E 1 3 5 715 13 11 9 17 19 21 2331 29 27 25 分析:这列数按每8个数一组有规律排列着。2001是这一列数中的第1001个数,10018=1251,即2001是这列数中第126组的第一个数,所以它所在的那一列是以字母B为代表的。试一试2:把自然数按下列规律排列,865排在哪一列?A B C D1 2 3 6 5 47 8 9 12 11 10 例题:2: 8888100个87,当商是整数时,余数是几?分析:从竖式中可以看出,被除数除以7,每次除得的余数以1、4、6、5、2、0不断重复出现。我们可以用
34、100除以6,观察余数就知道所求问题了。1006=164 余数是4说明当商是整数时,余数是1、4、6、5、2、0中的第4个数,即5。试一试2: 4444100个46当商是整数时,余数是几?专题10 盈亏问题专题简析:盈亏问题的基本数量关系是:(盈亏)两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1,两盈:两次分配都有多余;2,两不足:两次分配都不够;3,盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。解题时我们可以记住:1,“两亏”问题的数量关系是:两次亏数的差两次分得的差=参与分配对象总数;2,
35、“两盈”问题的数量关系是:两次盈数的差两次分得的差=参与分配对象总数;3,“一盈一亏”问题的数量关系是:盈与亏的和两次分得的差=参与分配对象总数。例1:某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。乒乓球队共有多少名学生?分析:(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人; (2)“少一个男生,增加一个女生”后,女生就比男生多22=4人,这时男生为女生人数的一半,即现在女生有42=8人。原来女生有81=7人,男生有72=5人,共有75=12人。试一试1:操场上有两堆货物,如果
36、甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。两堆货物一共有多少吨?例2:幼儿园老师拿出苹果发给小朋友。如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。有多少个小朋友?共有多少个苹果?分析:如果平均分给小朋友,则少4个,说明小朋友人数大于4;如果每个小朋友只发给4个,则教师也能留下4个,说明每人少拿若干个,就少拿44=8个苹果。因为小朋友人数大于4,所以,一定是每人少拿1个,有81=8个小朋友,有844=36个苹果。试一试:老师把一些铅笔奖给三好学生。每人5支则多4支,每人7支则少4支。老师有多少支铅笔?奖
37、给多少个三好学生?例3:幼儿园老师将一筐苹果分给小朋友。如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个。已知大班比小班多3人,这筐苹果有多少个?分析:如果大班减少3人,则大班和小班的人数同样多。这样,大班每人5个就多余3510=25个。由于两班人数相等,小班每人多分3个就要多分(252)个苹果,用(252)(85)就能得到小班同学的人数是9人,再用982就求出了这筐苹果有多少个。试一试3:老师给幼儿园小朋友分糖,每人3块还多10块;如果减少2个小朋友再分,每人4块还多7块。原来有多少个小朋友?有多少块糖?例4:幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块;
38、如果只分给中班的小朋友,平均每人可以多分得4块。如果只分给小班的小朋友,平均每人分得多少块?分析:这箱饼干分给小班和中班的小朋友,平均每人分得6块,如果只分给中班的小朋友,平均每人可多分4块。说明中班的人数是小班人数的64=1.5倍。因此,这箱饼干分给小班的小朋友,每位小朋友可多分到61.5=9块,一共可分到69=15块饼干。试一试4:甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。如果把这些红花让甲组同学单独做,每人要多做4朵。如果把这些红花让乙组同学单独做,每人要做几朵?例5:全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。这个班有
39、多少个同学?分析:根据题意可知:每船坐9人,就能减少一条船,也就是少9个同学;每船坐6人,就要增加一条船,也就是多出6个同学。因此,每船坐9人比每船坐6人可多坐96=15人,15里面包含5个(96),说明有5条船。知道了有5条船,就可以求全班人数:9(51)=36人。试一试5:老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个。这篮苹果一共有多少个?专题11 长方体和正方体(一)专题简析:解答稍复杂的立体图形问题要注意:1,必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2,依赖已经积累的空间观念,观察经过割、补后物体的表
40、面积或体积所发生的变化;3,求一些不规则的物体体积时,可以通过变形的方法来解决。例题1:一个零件形状大小如下图:算一算,它的体积是多少cm3?表面积是多少平方厘米?(单位:cm)分析:(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是1042=80(立方厘米),右边的长方体的体积是10(62)2=80(立方厘米),整个零件的体积是802=160(立方厘米);(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。因此,此零件的表面积就是(10610422)2=232(平方厘米)。试一试:一
41、个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少? 例题2:有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)分析:(1)先求出长方体的体积,856=240(cm3),由于挖去了一个孔,所以体积减少了222=8(cm3),这个零件的体积是2408=232(cm3);(2)长方体完整的表面积是(858665)2=236(平方厘米),但由于挖去了一个孔,它的表面积减少了一个(22)平方厘米的面,同时又增加了凹进去的5个(22)平方厘米的面,因此,这个零件的表面积是236224=252(平方厘米)。试一试2:
42、有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?例题3:一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原正方体的表面积是多少平方厘米?分析:一个正方体和一个长方体拼成新的长方体,其表面积比原来的长方体增加了4块正方形的面积,每块正方形的面积是504=12.5(平方厘米)。正方体有6个这样的面,所以,原来正方体的表面积是12.56=75(平方厘米)。试一试3:一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?例题4
43、:一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。这个长方体的体积和表面积各是多少?分析:长方体的前面和上面的面积是长宽长高=长(宽高),由于此长方体的长、宽、高用厘米为单位的数都是质数,所以有209=1119=11(172),即长、宽、高分别为11、17、2厘米。知道了长、宽、高求体积和表面积就容易了。试一试4:有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?专题12 长方体和正方体(二)专题简析:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。解答上述问题,必须掌握这样几点:1,将一个物体变形为另一种形状的物体(不计损耗),体积不变;2,两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3,物体浸入水中,排开的水的体积等于物体的体积。例题1:有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。从里面量,甲水箱长40厘米,宽32厘