《LC正弦波振荡器设计(新版)(共24页).doc》由会员分享,可在线阅读,更多相关《LC正弦波振荡器设计(新版)(共24页).doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 中北大学课 程 设 计 说 明 书学生姓名: 宋可为 学 号: 15 学 院: 信息商务学院 专 业: 电子信息工程 题 目: 电子综合应用实践: LC正弦波振荡器的设计 韩建宁指导教师: 职称: 讲师 2011 年 1 月 7 日 中北大学课程设计任务书 10/11 学年第 一 学期学 院: 信息商务学院 专 业: 电子信息工程 学 生 姓 名: 宋可为 学 号: 15 课程设计题目: 电子综合应用实践: LC正弦波振荡器的设计 起 迄 日 期: 2010年12月27 日2011年1月7日 课程设计地点: 201,503,1号楼教室 指 导 教 师: 韩建宁 系
2、主 任: 王浩全 下达任务书日期: 2010 年12 月 27 日课 程 设 计 任 务 书1设计目的:掌握LC正弦波振荡器的基本设计方法。通过该设计,可以巩固所学的LC振荡器工作原理等电子技术知识,促进学生所掌握的理论知识向实践应用的转变,从而达到培养学生电子综合应用实践能力的目的。2设计内容和要求(包括原始数据、技术参数、条件、设计要求等):使用电感、电容等器件设计一个LC正弦波振荡器,包括方案设计、电路设计和仿真验证。同组成员合作完成。具体设计要求:(1) 振荡频率10MHz10KHz;(2) 频率稳定度f/fo10-4;(3) 输出幅度Uo0.3V(峰-峰值)。3设计工作任务及工作量的
3、要求包括课程设计计算说明书(论文)、图纸、实物样品等:(1)查阅相关文献资料,了解LC正弦波振荡器的相关知识;(2)确定设计方案、绘制电路原理图;(3)仿真验证;(4)撰写课程设计说明书。 课 程 设 计 任 务 书4主要参考文献:1电子线路设计实验测试,第三版,谢自美 主编,华中科技大学出版社2高频电子线路实验与课程设计,杨翠娥主编,哈尔滨工程大学出版社3高频电路设计与制作,何中庸译,科学出版社4通信电子线路,第三版,高如云 主编,西安电子科技大学出版社5模拟电子技术。胡宴如 主编,高等教育出版社6电子技术基础实验与课程设计指导,第二版,高吉祥,主编,电子工业出版社 5设计成果形式及要求:提
4、供课程设计说明书一份;设计原理图。 6工作计划及进度:2010年12月27日 2010年12月29日:查阅资料;2010年12月30日 2011年1月4日:设计方案;2011年 1月 5日 2011年1月6日:完成实验;撰写课程设计说明书; 2011年1月7日:答辩系主任审查意见: 签字: 年 月 日 目 录 第一章 设计任务.8 一. 设计目的.8 二. 设计要求和步骤.8 三.方案设计及选择.8 1.振荡器的选择.8 2.信号输出波形的仿真选择.8 第二章 单元电路设计与参数计算.9 一. LC三点式振荡组成原理图.10 二起振条件.12 三频率稳定度.13 四. LC振荡模块设计.14第
5、三章 总原理图及元器件清单.15 一 总原理图.15 二. 元件清单.17第四章 调试步骤.18 一. 按设计电路安装元器件.19 二. 测试点选择.20 三. 调试.20 四. 实验结果与分析 .20 五. 频率稳定度.20第五章 供参考选择的元器件.21第六章 设计心得和体会.22第七章 参考文献.23 第一章 设计任务一 设计目的 (1). 熟悉LC正弦波振荡器的工作原理,以及示波器的原理及用法。 (2).掌握LC正弦波振荡器的基本设计方法。(3). 理解LC正弦波振荡回路并掌握LC振荡器的设计,装载,调试,及其主要性能参数的测试方法和如何选择电路的测试点。 (4). 了解外界因素、元件
6、参数对振荡器工作稳定性及频率稳定度的影响情,以便提高振荡器的性能。二 设计要求和步骤 (1). 设计一个LC正弦波频振荡器。 (2). 利用三端式振荡器原理产生正弦波信号,采用的具体电路不限。要求给出所选电路的优点和缺点并通过测量值进行证明。也可以进行不同三端式振荡器的性能比较。 (3).了解电路分布参数的影响及如何正确选择电路的静态工作点。 (4).电路的基本原理,LC正弦波振荡器是各种接收机和发射机中一种常见的电路,常用作载波振荡、本振混频振荡等。其典型形式为“三点式”振荡电路,其电路简单、频率稳定度高,它的工作原理是在正反馈的基础上,将直流电源提供的能量变成正弦交流输出。 (5)选择所需
7、的方案,画出有关的电路原理图。三 方案设计与选择 1.振荡器的选择LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。所以选择电容反馈三点式振荡器是不容置疑的,而电容反馈三点式振荡器又分为考毕兹振荡器,克拉波振荡器,西勒振荡器。 LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成,其框图如图1所示.。输出 放大电路 选频网络 正反馈网络 图1 振荡器框图 2.信号输出波形的仿真选择方案
8、一:三种振荡器输出信号波形全部用Multisim仿真软件得出;方案二:考毕兹振荡器的输出波形由仿真软件得出,其余两种振荡器由计算得出频率,画出相应的波形。经比较用仿真软件得出的波形比较直观简单而且准确,即选择方案一。 第二章 单元电路设计与参数计算一 LC三点式振荡组成原理图其振荡频率f=。当 和为容性,为感性时称为电容反馈振荡器,其中C=;当 和为感性,为容性时称为电容反馈振荡器,其中 L=+ . 二起振条件 X1,X2必须是同性质的电抗,X3必须是异性质电抗,并且必须满足下面的关系: X3= (X1+X2)根据起振条件,可以推导出三极管的跨导gm应满足下面的不等式: 上式中: = X2/
9、X1 反馈系数g1 为三极管be间的输入电导g0 为三极管ce间的输出电导为三极管ce间的负载电导和回路损耗电导之和。上式表明,起振时gm与、 g0、g1、等有关。若管子参数和负载确定后,大小应合适,否则不易满足起振条件。另外,还必须考虑到频率稳定度和振荡幅度等要求。三频率稳定度频率稳定度是表示在一定时间范围内或一定的温度、电压等变化范围内振荡频率的相对变化程度。若频率相对变化越小,就表明振荡频率稳定度越高,否则稳定度就差。由上述讨论知道,因为振荡回路元件是决定频率的主要因素,所以要提高频率稳定度,就是要设法提高振荡回路的标准性。因此除了采用高稳定和高(因为值越大相频特性曲线在附近的斜率越大,
10、选频特性就越好)的回路电容及电感外,还可以采用负温度系数元件实现温度补偿,或采用部分接入,以减小管子极间电容和分布电容对振荡回路频率的影响。由分析和实验知道,谐振回路的标准性和值都不高,频率稳定度不高于数量级,而石英晶体标准性值都很高,接入系数也很小。频率稳定度可达数量级。 四.LC振荡模块设计LC振荡电路采用三点式振荡,电容反馈三点式振荡器又分为考毕兹振荡器,克拉波振荡器,西勒振荡器。 方案一:考毕兹振荡器 图2 考毕兹振荡器 图3 考毕兹振荡器输出信号波形理论计算振荡器的频率为f7MHz观察到的振荡波形如图3所示,从波形看出其震荡极不稳定,测试其波形频率为 f=6.5MHz调解C1C2改变
11、频率时,反馈系数也改变。 方案二:克拉泼振荡器克拉泼振荡器其振荡频率为f=,式中C=,此电路的频率稳定度较好,但在振荡范围较宽时,输出幅度不均匀,且频率升高后不易起振,其主要用于固定频率或波段范围较窄的场合。电容三点式改进型“克拉泼振荡器”如图4所示。 图4 克拉泼振荡器克拉泼振荡器的频率为 f= (CC,CC)电路中C3为可变电容,调整它即可在一定范围内调整期振荡频率。输出信号的幅值、频率等用时时监测法测试,调整C3观测震荡信号的波形和频率变化。观察到的振荡波形如图5所示: 图5 克拉泼振荡器输出信号波形 方案三:西勒振荡器 西勒振荡器其振荡频率为f=,式中C=+,这种振荡器较易起振,振荡频
12、率也较为稳定,波形失真较小,当参数设置得当时,其频率覆盖系数较大。电容三点式的改进型“西勒振荡器”如图6所示。 图6 西勒振荡器其振荡器的频率为 f= (CC,CC)输出信号的幅值、频率等用实时监测法测试,调整C6、C3观测震荡信号的波形和频率变化。 观察到的振荡波形如图7所示:观 图7西勒振荡器输出波形基于以上分析,西勒振荡器输出波形较好故选用方案三。 第三章 总原理图及元器件清单一 总原理图 图8 考毕兹振荡器 图9 克拉泼振荡器 图10 西勒振荡器1二 元件清单元件序号型号主要参数数量备注R1(图8)5.1K1R2(图8)27 K1R3(图8)3.0 K1R4(图8)1.0 K1R5(图
13、8)5.1 K1C1(图8)100pF1C2(图8)100 pF1C3(图8)1.0nF1C4(图8)1.0nF1C5(图8)1.0nF1C6(图8)10nF1C7(图8)10nF1L1(图8)10uH1L2(图8)300 uH1Q12N2222A1V112V1R1(图9)24 K1R2(图9)56 K1R3(图9)3.0 K1R4(图9)1.0 K1R5(图9)5.1 K1C1(图9)100pF1C2(图9)100pF1C3(图9)30 pF1可变C4(图9)1.0nF1C5(图9)1.0nF1C6(图9)10 nF1C7(图9)10 nF1L1(图9)10H1L2(图9)300H1Q1(图
14、9)2N2222A1V1(图9)12V1R1(图10)24 K1R2(图10)56 K1R3(图10)3.0 K1R4(图10)1.0 K1R5(图10)5.1 K1C1(图10)100pF1C2(图10)100pF1C3(图10)30 pF1C4(图10)1.0nF1C5(图10)1.0nF1C6(图10)30pF1可变C7(图10)10 nF1C8(图10)10 nF1L1(图10)10H1L2(图10)300H1Q1(图10)2N2222A1V1(图10)12V1. 第四章 调试步骤一 按设计电路安装元器件由于调频振荡器的工作频率较高,晶体管的结电容、引线电感、分布电容及测量仪器对电路的
15、性能影响均不能忽略。因此,在电路装调及测试时应尽量减小这些分布参数的影响。安装时应合理布局,减小分布参数的影响。电路元件不要排得太松,引线尽量不要平行,否则会在元件或引线之间产生一点的分布参数,引起寄生反馈。多级放大器应排成一条直线,尽量减小未级和前级之间的耦合。地线应尽可能粗,以减小分布电感引起的高频损耗,制印刷电路板时,地线的面积应尽量大。为减小电源内阻形成的寄生反馈,应采用滤波电容(C)及滤波电感(L)组成的()型或(T)型滤波电路,一般(L)为几十微亨至几百微亨,(C)为几百皮法至几十千皮法。 二 测试点选择 正确选择测试点,减小仪器对被测电路的影响。在高频情况下,测量仪器的输入阻抗(
16、包含电阻和电容)及连接电缆的分布参数都有可能影响被测电路的谐振频率及谐振回路的Q值,为尽量减小这种影响,应正确选择测试点,使仪器的输入阻抗远大于电路测试点的输出阻抗。对于图2所示电路,高频电压表接于C点,示波器接于E点,数字频率计接于A点,(C4)的值要小,以减小数字频率计的输入阻抗对谐振回路的影响。所有测量仪器如高频电压表,示波器,扫描仪,数字频率计等的地线及输入电缆的地线都要与被测电路的地线连接好,接线尽量短。三 调试1.一般高频电路的实验板应为印刷电路板,以保证元器件可靠焊接及连接导线固定,使电路的分布参数基本固定。高频电路的调试方法与低频电路的调试方法基本相同,也是先调整静态工作点,然
17、后观测动态波形并测量电路的性能参数。所不同的是按照理论公式计算的电路参数与实际参数可能相差较大,电路的调试要复杂一些。2. 关于起振问题振荡电路接通电源后,有时不起振,或者在外界信号强烈触发下才起振(硬激励),在波段振荡器中有时只在某一频段振荡,而在另一频段不振荡等。所有这些现象无非是没有满足相位平衡条件或振幅平衡条件。如果在全波段内不振荡,首先要看相位平衡条件是否满足。对三端振荡电路要看是否满足对应的相位平衡判断标准。此外,还要在振幅平衡条件所包含的各种因素中找原因。 四 实验结果与分析 1.静态工作点选的太小,电源电压过底,使振荡管放大倍数太小。 2.负载太重,振荡管与回路间耦合过紧,回路
18、Q值太低。 3回路特性阻抗或介入系数pce太小,使回路谐振阻抗RO太低。 4.反馈系数kf太小,不易满足振幅平衡条件。但kf并非越大越好,应适当选取。 5.有时在某一频段内高频端起振,而低频端不起振,这多半是在用调整回路电容来改变振荡频率的电路中,低端由于C增大而L/C下降,致使写真阻抗降低所起。反之,有时低端振高端不振,原因可能有: (1)选用晶体管fT不够高。 (2)管的电流放大倍数太小。 (3)低端已处于起振的临界边缘状态,在高频工作时晶体管输入电容CBE的作用使反馈减弱,或者是由于CBE的反馈作用显著等。五 频率稳定度 LC谐振回路的标准性和Q值都不高,频率稳定度不高于数量级,而石英晶
19、体标准性Q值都很高,接入系数也很小。频率稳定度可达数量级。 第五章 供参考选择的元器件 高频信号发生器 QF1055A 1台 数字示波器 TDS210 1台 频率特性测试仪 BT-3C 1台 数字万用表 M 1台 直流稳压电源 HY1711-2 1台 超高频毫伏表 DA22A 1台 第六章 设计心得和体会 课程设计是培养学生综合运用所学知识,发现、提出、分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。此次课程设计,使我的动手能力得到进一步的提高。与模拟电子技术课程设计数字电子线路课程设计比,高频电子线路的课程设计具有更大的难度和更强的挑战性。 在设计过程中
20、不仅锻炼了我们最基本的高频电子线路的设计能力,更重要的是让我们更深刻的认识了高频电子线路这门课程在实际中的应用。此次课程设计主要针对各种电容反馈三点式电路提出自己的设计方案,并利用仿真软件Multisim来实现自己的设计电路图。设计中用到了考毕兹振荡器,克拉波振荡器,西勒振荡器电路等在高频电子线路课程中学到的知识。由于对所学电路不熟悉,导致在设计的过程中无法画出正确的电路图,算不出电路中元器件的参数,使得在设计过程中绕了许多弯路,做了许多的无用功。但在室友们的帮助下,再加上自己不断的查找相关资料,利用图书馆和网络,最终克服了所有困难。同时也巩固了以前所学过的知识,而且学到了很多在书本上所没有学
21、到过的知识。通过这次课程设计使我懂得了理论与实际相结合的必要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。通过对上述不同振荡器的设计与仿真,了解了各种正弦波振荡器在结构上的利与弊,是我们在选择正弦波振荡器时更加明确那种振荡器更适合。这次技能训练,让我们更好的掌握了各种电路的测试与计算;熟悉了电子仿真的工作原理和其具体的使用方法.更深刻的理解课本知识。总之,从中我学习到了如何对待遇到的困难,增强了对设计电路的思考能力。在这次的设计中,张老师给了我们很大的自由空间,可自己选择题目,这次课程设计培养了我一丝不苟的科学态度,提高了我实践能力。最后要真诚的感谢张老师、李老师和刘老师的指导! 第七章 参考文献 参考文献1高频电子线路,谈文心,西安交通大学出版社2高频电子线路实验与课程设计,杨翠娥主编,哈尔滨工程大学出版社3数字电子技术,电子工业出版社4通信电子线路,第三版,高如云 主编,西安电子科技大学出版社5模拟电子技术。胡宴如 主编,高等教育出版社6电子技术基础实验与课程设计指导,第二版,高吉祥,主编,电子工业出版社LC正弦波振荡器的设计 班级 : X 姓名: 宋可为 学 号: 15 指 导 教 师: 韩建宁 2011 年 1 月 7 日专心-专注-专业