《对数函数及其性质(第一课时)教学设计教学设计(共5页).doc》由会员分享,可在线阅读,更多相关《对数函数及其性质(第一课时)教学设计教学设计(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上附件2: 年金昌市优质课竞赛活动教 案教案题目:对数函数及其性质(第一课时) 授课班级: 姓 名: 单 位; 2.2.2对数函数及其性质(第一课时)教学设计一、 设计思想:对数函数是学生在高中阶段继学习了指数函数后的第二个基本初等函数,本节课通过一个关于细胞分裂次数的实际问题,引入对数函数,既说明对数函数的概念来自实际生活,又便于学生接受;在整个教学过程中,类比学习指数函数的方法来探索和研究对数函数的图象与性质,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会。二、教学目标分析(1) 知识与技能:理解对数函数的概念,掌握对数函数的图象与性
2、质,初步利用对数函数的图象与性质来解决简单的问题。(2) 过程与方法:通过创设情境,对对数函数的概念有初步认识;经历探究对数函数的图象与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。(3) 情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。三、教学重难点分析重点:理解对数函数的定义,掌握对数函数的图象和性质;难点:用数形结合的方法从具体到一般地探索、概括对数函数的性质。四、教法分析 考虑学生的认知特点和情感特点,本节课采用“从特殊到一般”、“从具体到抽象”的
3、方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。五、教学过程教学环节教学内容教学活动设计说明新课导入引题:一个细胞由一个分裂成两个,两个分裂成四个依此类推,(1)求这样的一个细胞分裂的次数x与细胞个数y之间的函数关系式。(2)16个细胞是这个细胞经过几次分裂得到的?那么要得到32个,64个个细胞呢?学生认真听讲学生思考问题,在教师的引导下完成问题并引出本节课的课题这样设计不仅学生容易接受而且没有用到反函数的概念,为后续学习反函数的概念做了铺垫作用。对数函数的概念定义:一般地,形如(a0且a1)的函数叫做对数函数,其中为自变量。思考:对数函数的定义域是什么?注意:对数函数的定义与
4、指数函数类似,都是形式定义,注意辨别;对数函数对底数的限制:,且。练习题:判断下列函数是否是对数函数(1) (2)(3) (4)(5) 其中,且引导学生描述教师提出问题,引导学生思考,回答问题学生作答,教师指导用指数函数来分析对数函数定义域,以便下一步学生画图时进一步的体会。通过练习题的处理使学生对对数函数的概念有了更准确的认知与理解。对数函数的图象与性质问题1:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?1、画图,形成感知:下面以两个特殊的对数函数与为例,通过图象来发现对数函数的性质。问题2:画一个函数图象要分哪几步?第一步:列表X0.51248-1012310-
5、1-2-3注意:省略号代表图象上有无数多个点,不能完全列出,这样用五个点来绘出图象的方法叫五点法作图。第二步:描点第三步:用平滑的曲线将5个点顺次连接起来。2、合作探究、发现性质现在同学们分组共同合作完成与图象,展示学生成果,评价画的好的组,指出存在的问题。问题3:这四个函数图象的共同点是什么?不同点在哪?相同点:1.定义域(0,+),值域是R 2.都过定点(1,0),没有最值 3.都是非奇非偶函数不同点:1.对数函数底数不同 2.函数的单调性不同问题4:什么影响了对数函数的单调性?当a1时,函数在定义域上单调递增;当1a0时,函数在定义域上单调递减。学生回答学生听讲学生回答:1.列表,2.描
6、点,3.用平滑的曲线连接学生画图学生思考学生回答学生回答感受数形结合的作用,多角度的理解对数函数概念。回顾画函数图象的几个要点,及时给学生指导利用多媒体画图,给学生演示,学生通过模仿、进一步体会理解。启发学生探究对数图象性质,从定义域、值域、定点、单调性等角度来体会对数图象的相同点与不同点,然后找出影响要素。方法应用例1、求下列函数的定义域(其中,且:(1); (2); 例2、 比较下列各组数中两个值的大小:(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7(3)log a5.1 , log a5.9 ( a0 , a1 ) 随堂练习 课本第7
7、3页的练习第2、3题例1是对对数型函数定义域的考查。目的是让学生掌握形如此类题目只需考虑真数大于零。例2是比较两个对数值大小的问题。前两道题是直接利用函数单调性来比较,第3道题是为了让学生注意当底数不确定时,要有分类讨论的意识,这三道题是层层深入,逐渐加深难度,通过这种变式教学可充分调动学生的解题积极性,调动他们的思维。归 纳小 结(1)学习了对数函数的图象及其性质;(2)对数函数的图象及其性质的思想方法总结类比思想;分类讨论思想;数形结合思想师生共同回顾与总结所学的知识与方法。通过知识与方法的总结,使得所学的知识系统化、条理化。课 堂作 业必做题:课本第74页习题2.2A组第7、8题,B组第2题;思考题:底数对对数函数值变化的影响?教师批阅,发现问题及时纠正。思考题的意图在于增强学生课下的自学与交流意识。八、板书设计2.2.2对数函数及其性质(第一课时)1、 引入.2、 对数函数定义.3、 合作探究.多媒体投影屏幕4、应用举例例1例25、课堂练习九、教学反思2.2.2对数函数及其性质坐标纸十、坐标纸1、列表2、描点54321-4-3-2-1012345678910-1-2-2-3-4 坐标系学生姓名:_ 专心-专注-专业