《周世勋量子力学习题解答第三章(共28页).doc》由会员分享,可在线阅读,更多相关《周世勋量子力学习题解答第三章(共28页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章习题解答3.1 一维谐振子处在基态,求: (1)势能的平均值; (2)动能的平均值; (3)动量的几率分布函数。解:(1) (2) 或 (3) 动量几率分布函数为 # 3.2.氢原子处在基态,求: (1)r的平均值; (2)势能的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1) (3)电子出现在r+dr球壳内出现的几率为 令 当为几率最小位置 是最可几半径。 (4) (5) 动量几率分布函数 #3.3 证明氢原子中电子运动所产生的电流密度在球极坐标中的分量是 证:电子的电流密度为 在球极坐标中为 式中为单位矢量 中的和部
2、分是实数。 可见, #3.4 由上题可知,氢原子中的电流可以看作是由许多圆周电流组成的。 (1)求一圆周电流的磁矩。 (2)证明氢原子磁矩为 原子磁矩与角动量之比为 这个比值称为回转磁比率。 解:(1) 一圆周电流的磁矩为 (为圆周电流,为圆周所围面积) (2)氢原子的磁矩为 在单位制中 原子磁矩与角动量之比为 #3.5 一刚性转子转动惯量为I,它的能量的经典表示式是,L为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数:(1) 转子绕一固定轴转动:(2) 转子绕一固定点转动:解:(1)设该固定轴沿Z轴方向,则有 哈米顿算符 其本征方程为 (无关,属定态问题) 令 ,则 取其解为 (
3、可正可负可为零)由波函数的单值性,应有 即 m= 0,1,2,转子的定态能量为 (m= 0,1,2,)可见能量只能取一系列分立值,构成分立谱。 定态波函数为 A为归一化常数,由归一化条件 转子的归一化波函数为 综上所述,除m=0外,能级是二重简并的。 (2)取固定点为坐标原点,则转子的哈米顿算符为 无关,属定态问题,其本征方程为 (式中设为的本征函数,为其本征值) 令 ,则有 此即为角动量的本征方程,其本征值为 其波函数为球谐函数 转子的定态能量为 可见,能量是分立的,且是重简并的。#3.6 设t=0时,粒子的状态为 求此时粒子的平均动量和平均动能。解: 可见,动量的可能值为 动能的可能值为
4、对应的几率应为 上述的A为归一化常数,可由归一化条件,得 动量的平均值为 # *shangshuyihe*3.7 一维运动粒子的状态是 其中,求: (1)粒子动量的几率分布函数; (2)粒子的平均动量。 解:(1)先求归一化常数,由 动量几率分布函数为 (2) #3.8.在一维无限深势阱中运动的粒子,势阱的宽度为,如果粒子的状态由波函数 描写,A为归一化常数,求粒子的几率分布和能量的平均值。 解:由波函数的形式可知一维无限深势阱的分布如图示。粒子能量的本征函数和本征值为 动量的几率分布函数为 先把归一化,由归一化条件, 3.9.设氢原子处于状态 求氢原子能量、角动量平方及角动量Z分量的可能值,
5、这些可能值出现的几率和这些力学量的平均值。 解:在此能量中,氢原子能量有确定值 角动量平方有确定值为 角动量Z分量的可能值为 其相应的几率分别为 , 其平均值为 3.10一粒子在硬壁球形空腔中运动,势能为 求粒子的能级和定态函数。 解:据题意,在的区域,所以粒子不可能运动到这一区域,即在这区域粒子的波函数 () 由于在的区域内,。只求角动量为零的情况,即,这时在各个方向发现粒子的几率是相同的。即粒子的几率分布与角度无关,是各向同性的,因此,粒子的波函数只与有关,而与无关。设为,则粒子的能量的本征方程为 令 ,得 其通解为 波函数的有限性条件知, 有限,则 A = 0 由波函数的连续性条件,有
6、其中B为归一化,由归一化条件得 归一化的波函数 #3.11. 求第3.6题中粒子位置和动量的测不准关系 解: 3.12.粒子处于状态 式中为常量。当粒子的动量平均值,并计算测不准关系 解:先把归一化,由归一化条件,得 / 是归一化的 动量平均值为 (奇被积函数) # 11/10 补充 1试以基态氢原子为例证明:的本征函数,而是的本征函数。 可见, 可见,是的本征函数。 2证明:的氢原子中的电子,在的方向上被发现的几率最大。 解: 的电子,其 当时 为最大值。即在方向发现电子的几率最大。 在其它方向发现电子的几率密度均在之间。 3试证明:处于1s,2p和3d态的氢原子的电子在离原子核的距离分别为
7、的球壳内被发现的几率最大(为第一玻尔轨道半径 )。 证:对1s态, 令 易见 ,当不是最大值。 为最大值,所以处于1s态的电子在处被发现的几率最大。 对2p态的电子 令 易见 ,当为最小值。 为几率最大位置,即在的球壳内发现球态的电子的几率最大。 对于3d态的电子 令 易见 ,当为几率最小位置。 为几率最大位置,即在的球壳内发现球态的电子的几率最大。 张 P.74 21 当无磁场时,在金属中的电子的势能可近似视为 其中 ,求电子在均匀场外电场作用下穿过金属表面的透射系数。 解:设电场强度为,方向沿轴负向,则总势能为 , 势能曲线如图所示。则透射系数为 式中为电子能量。,由下式确定 令 ,则有
8、透射系数27/9 全是补充题: 1指出下列算符哪个是线性的,说明其理由。 ; ; 解:是线性算符 不是线性算符 是线性算符 2指出下列算符哪个是厄米算符,说明其理由。 3、下列函数哪些是算符的本征函数,其本征值是什么? , , , 解: 不是的本征函数。 不是的本征函数,其对应的本征值为1。 可见,是的本征函数,其对应的本征值为1。 是的本征函数,其对应的本征值为1。 是的本征函数,其对应的本征值为1。 4试求算符的本征函数。 解:的本征方程为 (的本征值)第二章 薛定格方程 3如果把坐标原点取在一维无限深势阱的中心,求阱中粒子的波函数和能级的表达式。 解: 方程(分区域): : : : 令
9、标准条件: 取 , 即 粒子的波函数为 粒子的能级为 由归一化条件,得 粒子的归一化波函数为 4证明:处于1s、2p和3d态的氢原子中的电子,当它处于距原子核的距离分别为的球壳处的几率最(为第一玻尔轨道半径)。 证: 令 ,则得 为几率最小处。 为几率最大处。 令 ,则得 为最大几率位置。 当 时, 为几率最小位置。 令 ,得 同理可知 为几率最小处。 为几率最大处。 5求一维谐振子处在第一激发态时几率最大的位置。 解: 令 ,得 , , 为几率最小处。 , 为几率最大处。 6设氢原子处在的态(为第一玻尔轨道半径),求 的平均值;势能的平均值。 解: 7粒子在势能为 的场中运动。证明对于能量的状态,其能量由下式决定: (其中) 证:方程 : : :令 则得 : : : 其通解为 利用标准条件,由有限性知 由连续性知 由、,得 由、,得 而把、代入,得 整理,得 令 由,得 #第三章 力学量的算符表示 1、2(略)。 3设波函数,求 解: 4说明:如果算符和都是厄米的,那么 (+)也是厄米的 证: +也是厄米的。 5问下列算符是否是厄米算符: 解: 因为 不是厄米算符。 是厄米算符。 # 6 (略) 7如果算符满足关系式,求证 证: 8求 解: = 0 9 解: = 0 专心-专注-专业
限制150内