牛头刨床机械原理课程设计8点和5点(共17页).doc

上传人:飞****2 文档编号:13915136 上传时间:2022-05-01 格式:DOC 页数:17 大小:634KB
返回 下载 相关 举报
牛头刨床机械原理课程设计8点和5点(共17页).doc_第1页
第1页 / 共17页
牛头刨床机械原理课程设计8点和5点(共17页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《牛头刨床机械原理课程设计8点和5点(共17页).doc》由会员分享,可在线阅读,更多相关《牛头刨床机械原理课程设计8点和5点(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 机械原理 课程设计说明书 日 期 2012.6.16 课程设计说明书牛 头 刨 床1. 机构简介牛头刨床是一种用于平面切削加工的机床。电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。为此刨床采用有急回作用的导杆机构。刨刀每次削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工件作一

2、次进给运动,以便刨刀继续切削。刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减少主轴的速度波动,以提高切削质量和减少电动机容量。1-11导杆机构的运动分析 已知 曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。要求 作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。以上内容与后面动态静力分析一起画在1号图纸上。1.1 设计数据牛头刨床是一种用于平面切削加工的机床。电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床

3、工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。刨头右行时,刨刀进行切削,称工作切削。此时要求速度较低且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。为此刨床采用急回作用得导杆机构。刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮机构带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需装飞轮来减小株洲的速度波动,以减少切削质量和电动机

4、容量。设计内容导杆机构的运动分析符号n2LO2O4LO2ALo4BLBCLo4s4xS6yS6单位r/minmm方案603801105400.25lo4B0.5 lo4B240501.2曲柄位置的确定曲柄位置图的作法为:取1和8为工作行程起点和终点所对应的曲柄位置,1和7为切削起点和终点所对应的曲柄位置,其余2、312等,是由位置1起,顺2方向将曲柄圆作12等分的位置(如下图)。 取第方案的第8位置和第5位置(如下图)。1.5速度分析以速度比例尺=(0.01m/s)/mm和加速度比例尺a=(0.05m/s)/mm用相对运动的图解法作该两个位置的速度多边形和加速度多边形如下图1-4,1-5,并将

5、其结果列入表格(1-2) 表格 1-1位置未知量方程 8和5号位置 VA4 A4=A3+A4A3大小 ? ?方向 O4A O2A O4BVC C5=B5+C5B5大小 ? ?方向 XX O4B BCaA aA4 = + aA4= aA3n + aA4A3K + aA4A3r大小: 42lO4A ? 24A4 A3 ?方向:BA O4B AO2 O4B(向左) O4B(沿导路) acac5= aB5+ ac5B5n+ a c5B5大小 ? ?方向 XX CB BC8号位置速度图:如图由图解得:Vc=0.m/s8号位置加速度图:如图 由图解的:aC=6.m/s2 表格(1-2)位置要求图解法结果8

6、vc(m/s)0.ac(m/s)6.3vc(m/s)0.ac(m/s)0.各点的速度,加速度分别列入表1-3,1-4中表1-3项目位置24VAVBVc86.0.0.0.0.36.1.0.0.0.单位r/sr/sm/s表1-4项目位置84.0.10-34.7.6.34.0.3.4.0.单位1.4导杆机构的动态静力分析设计数据导杆机构的动静态分析G4G6PypJs4Nmmkg.m22208009000801.2已知 各构件的重量G(曲柄2、滑块3和连杆5的重量都可忽略不计),导杆4绕重心的转动惯量Js4及切削力P的变化规律。要求 求各运动副中反作用力及曲柄上所需要的平衡力矩。以上内容做在运动分析的

7、同一张图纸上。首先按杆组分解实力体,用力多边形法决定各运动副中的作用反力和加于曲柄上的平衡力矩。参考图1-3,将其分解为5-6杆组示力体,3-4杆组示力体和曲柄。图2-12.1矢量图解法:取5号位置为研究对象:2.1.1 5-6杆组示力体共受五个力,分别为P、G6、Fi6、R16、R45, 其中R45和R16 方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力F16 均垂直于质心, R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左。选取比例尺= (10N)/mm,作力的多边形。将方程列入表2-1。U=10N/mm已知P=9000N,G6=800N,又a

8、c=ac5=4.m/s2,那么我们可以计算FI6=- G6/gac =-800/104. =-366.N 又F=P + G6 + FI6 + F45 + FRI6=0,方向 /x轴 BC 大小 9000 800 ? ?作为多边行如图1-7所示图1-7图1-7力多边形可得: F45=8634.N N=950. N在图1-6中,对c点取距,有 MC=-PyP-G6XS6+ FR16x-FI6yS6=0 代入数据得x=1.m 分离3,4构件进行运动静力分析,杆组力体图如图1-8所示,2.1.2对3-4杆组示力体分析u=10N/mm已知: F54=-F45=8634.N,G4=220NaB4=aA4

9、lO4S4/lO4A=2.m/s2 , S4=4=7.rad/s2 由此可得: FI4=-G4/gaS4 =-220/102.N=-49.N MS4=-JS4aS4=-9. 在图1-8中,对O4点取矩得:MO4= Ms4 + FI4x4 + F23x23+ F54x54 + G4x4 = 0代入数据, 得MO4=-9.-49.0.29+F230.+8634.0.+2200.=0 故F23=11810.773N Fx + Fy + G4 + FI4 + F23 + F54 = 0方向: ? ? M4o4 大小: O4B 由图解得:Fx=2991.N Fy=1414.N 方向竖直向下2.1.3 对曲柄分析,共受2个力,分别为R32,R12和一个力偶M,由于滑块3为二力杆,所以R32= R34,方向相反,因为曲柄2只受两个力和一个力偶,所以FR12与FR32等大反力,由此可以求得:h2=72.mm,则,对曲柄列平行方程有,MO2=M-F32h2=0 即M=0.*11810.773=0, 即M=858.NM专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁