《反比例函数知识点总结典型例题大全(共5页).doc》由会员分享,可在线阅读,更多相关《反比例函数知识点总结典型例题大全(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上反比例函数 (一)反比例函数的概念1()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3反比例函数的自变量,故函数图象与x轴、y轴无交点(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)(三)反比例函数及其图象的性质1函数解析式:()2自变量的取值范围:3图象:(1)图象的形状:双曲线 越大,图象的弯曲度越小,曲线越平直越小,图象的弯曲度越大(2)图象的位
2、置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上4k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PAx轴于A点,PBy轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是)如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QCPA的
3、延长线于C,则有三角形PQC的面积为 图1 图25说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论(2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称(3)反比例函数与一次函数的联系(四)实际问题与反比例函数1求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式2注意学科间知识的综合,但重点放在对数学知识的研究上(五)充分利用数形结合的思想解决问题三、例题分析考点1反比例函数的概念(1)下列函数中,y是x的反比例函数的是( )Ay=3x B C3xy=1 D(2)下列函数中,
4、y是x的反比例函数的是( )AB CD考点2图象和性质(1)已知函数是反比例函数,若它的图象在第二、四象限内,那么k=_若y随x的增大而减小,那么k=_(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第_象限(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_象限(4)已知ab0,点P(a,b)在反比例函数的图象上, 则直线不经过的象限是( )A第一象限 B第二象限 C第三象限 D第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点, 则一次函数y=kx+m的图象经过( )A第一、二、三象限 B第一、二、四象限C第一、三、四象限 D第二、三、四
5、象限(6)已知函数和(k0),它们在同一坐标系内的图象大致是( ) A B C D考点3函数的增减性(1)在反比例函数的图象上有两点,且,则的值为( )A正数 B负数 C非正数 D非负数(2)在函数(a为常数)的图象上有三个点,则函数值、的大小关系是( )ABCD(3)下列四个函数中:; y随x的增大而减小的函数有( )A0个 B1个 C2个 D3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”)注意,(3)中只有是符合题意的,而是在“每一个象限内” y随x的增大而减小考点4解析式的确定(1)若与成反比
6、例,与成正比例,则y是z的( )A正比例函数 B反比例函数 C一次函数 D不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为 (2,m),则m=_,k=_,它们的另一个交点为_(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3)求x 0的值;求一次函数和反比例函数的解析式(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,
7、此时室内空气中每立方米的含药量为6毫克 请根据题中所提供的信息解答下列问题:药物燃烧时y关于x的函数关系式为_,自变量x 的取值范围是_;药物燃烧后y关于x的函数关系式为_研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_分钟后,学生才能回到教室; 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?考点5面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、,则( )ABCD
8、 第(1)题图 第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC/y轴,BC/x轴,ABC的面积S,则( )AS=1 B1S2 CS=2 DS2(3)如图,RtAOB的顶点A在双曲线上,且SAOB=3,求m的值 第(3)题图 第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小(5)如图,正比例函数y
9、=kx(k0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若ABC面积为S,则S=_ 第(5)题图 考点6.一次函数与反比例函数综合1. 如图,一次函数与反比例函数在第一象限的图象交于点,且点的横坐标为1,过点作轴的垂线,为垂足,若,求一次函数和反比例函数的解析式. _2. 如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限PAx轴于点A,PBy轴于点B一次函数的图象分别交轴、轴于点C、D,且SPBD=4,(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;yxPBDAOC(3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.3. 已
10、知正比例函数的图象与反比例函数的图象有一个交点的纵坐标是2.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围.4. 已知:,与成正比例,与成反比例,且时,;时,求时,的值5. 如图,是反比例函数在第一象限图像上的一点,点的坐标为(2,0)(1)当点的横坐标逐渐增大时,的面积将如何变化?(2)若与均为等边三角形,求此反比例函数的解析式及点的坐标yxOP1P2A2A16. 如图,一次函数与反比例函数在第一象限的图象交于点,且点的横坐标为1,过点作轴的垂线,为垂足,若,求一次函数和反比例函数的解析式. _7. 如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限PAx轴于点A
11、,PBy轴于点B一次函数的图象分别交轴、轴于点C、D,且SPBD=4,(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;yxPBDAOC(3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.8. 已知正比例函数的图象与反比例函数的图象有一个交点的纵坐标是2.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围.9. 已知:,与成正比例,与成反比例,且时,;时,求时,的值10. 如图,是反比例函数在第一象限图像上的一点,点的坐标为(2,0)(1)当点的横坐标逐渐增大时,的面积将如何变化?(2)若与均为等边三角形,求此反比例函数的解析式及点的坐标yxOP1P2A2A1专心-专注-专业