《人教版高一必修一生物知识点整合(共27页).docx》由会员分享,可在线阅读,更多相关《人教版高一必修一生物知识点整合(共27页).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上生物1. 病毒没有细胞结构,只有依赖活细胞才能生存。(病毒分为:植物病毒、动物病毒、噬菌体)HIV、SARS(导致人体免疫力降低,死于其他病原微生物的感染。)2. 单细胞生物:单细胞藻类:衣藻(植物)单细胞动物:草履虫、变形虫。球菌、杆菌、螺旋菌、弧菌。3. 多细胞生物依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动 例如: 以细胞代谢为基础的生物与环境之间物质和能量的交换以细胞增殖、分化为基础的生长发育以细胞内基因的传递和变化为基础的遗传与变异。4. 生命系统的结构层次:细胞组织器官系统个体种群群落生态系统生物圈。(种群:在一定区域内,同种生物的所有个体;群
2、落:所有的种群(生物)组成一个群落)最基本的生命系统:细胞 最大的生命系统:生物圈。5. 科学家根据细胞内有无以核膜为界限的细胞核,把细胞分成真核生物和原核生物两大类。6. 蓝藻:也称蓝细菌但不属于细菌,会导致水中生物缺氧影响水质和水生动物的生活。蓝藻细胞内含有蓝藻素和叶绿素,是能进行光合作用的自养生物。蓝藻四大类:蓝球藻念珠藻颤藻发菜7. 细菌中绝大多数种类是营腐生或寄生生活的异养生物(人也是异养生物)8. 原核细胞 有 有 核糖体 拟核 细菌、蓝藻 (肽聚糖) (有且仅有 (环状DNA) 一种细胞器) 动物(无) 有 多种细胞器 有 植物 (染色体 动物 酵母菌(单细胞)DNA和蛋白质)
3、真菌 木耳真核细胞 霉菌 植物(有) (纤维素、果胶) 9. 细胞学说的意义:揭示细胞统一性和生物体结构统一性。建立者:德国科学家施莱登(植物)施旺(动物)内容:细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用新细胞可以从老细胞中产生。10. 英国科学家虎克,既是细胞的发现者,也是命名者。11. 德国的魏尔肖总结“细胞通过分裂产生新细胞。”名言“所有的细胞都来源于先前存在的细胞”12. 细胞统一性:都有细胞膜、细胞质、DNA 多样性:各类细胞区别。13. 目镜越长放大倍数越小,物镜越短放大
4、倍数越小14. 显微镜放大的是物体的长度或宽度,不是面积或体积;15. 细胞在视野中呈单行或单列分布: 细胞在视野中呈充满排布:16. 显微镜呈像:映入眼里的是倒立放大的虚像,物与像关于中心对称17. 使用高倍镜:转动反光镜使视野明亮(凹面镜比平面镜更亮)在低倍镜下观察清楚后,把要放大观察的物像移至视野中央转动转换器,换成高倍镜。观察并用细准焦螺旋调焦(不能转动粗准焦螺旋)第二章1. 生物体与环境:统一性:元素种类相同 差异性:元素含量不同2. 细胞中常见的化学元素有20多种:大量元素:C/H/O/N/P/S/K/Ca/Mg 微量元素:Fe/Mn/Zn/Cu/B/Mo(缺Fe贫血,缺B植物无法
5、受精没有果实)3. 人体细胞鲜重主要元素含量:OCHN 干重:CONH 主要元素:C H O N P S(C为最基本元素)水无机盐基本元素4.组成细胞的元素大多以化合物的形式存在。5. 含量最多:水,其次:蛋白质(蛋白质是有机化合物中含量最多的) 6. 氨基酸是组成蛋白质的基本单位7. 在生物体中组成蛋白质的氨基酸约有20种。8. 每种氨基酸分子至少都含有一个氨基和一个羧基,并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子 和一个侧链基团(R)氨基酸之间的区别在于R基的不同。9. 必需氨基酸:8种(婴儿有9种),必须从外界环境中直接获取。 非必需氨基酸:12种,人体细
6、胞能够合成的。10. 蛋白质是以氨基酸为基本单位构成的生物大分子 ,组成元素:C/H/O/N/(P/S/Fe)11. 12. 氨基酸分子互相结合的方式:一个氨基酸分子的羧基和另一个氨基酸分子的氨基同时脱去一分子水,这种结合方式叫做脱水缩合。连接两个氨基酸分子的化学键(NHCO)叫做肽键。由两个氨基酸分子缩合而成的化合物叫做二肽。13. 脱去水分子数=肽键数=氨基酸数-肽链数(开裂) 脱去水分子数=肽键数=氨基酸数(环状)14.水解 脱水缩合 (水解:蛋白酶破坏肽键)由多个氨基酸分子缩合而成,含有多个肽键的化合物叫多肽。多肽通常呈链状结构,叫做肽链。肽链通过盘曲、折叠,形成有一定空间结构的蛋白质
7、分子。许多蛋白质分子含有几条肽链,他们通过一定的化学键互相结合在一起。蛋白质的功能15. 蛋白质是构成细胞和生物体结构的重要物质,称为结构蛋白。 大多数的酶都是蛋白质,具有催化作用 蛋白质具有运输载体的功能(血红蛋白运输氧) 有些蛋白质起信息传递作用,能够调节机体的生命活动(胰岛素) 有些蛋白质有免疫功能,人体的抗体是蛋白质,帮助人体抵御病菌和病毒的侵害(免疫球蛋白)16. 一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。17. 核酸:脱氧核糖核酸,简称DNA 核糖核酸,简称RNA18. 核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质生物合成中具有极其重要的作用。19.
8、 真核细胞的DNA主要分布在细胞核中。线粒体、叶绿体内也少量含有DNA。RNA主要分布在细胞质中。 原核细胞的DNA主要分布在拟核中,RNA分布在细胞质中。20. 核酸同蛋白质一样,也是生物大分子。核酸是由核苷酸连接而成的长链,核苷酸是核酸的基本单位,即组成核酸分子的单体。21. 核苷酸是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同,将核苷酸分为脱氧核糖核酸,简称脱氧核苷酸,和核糖核苷酸。元素组成:C/H/O/P/N2223. DNA是由二条脱氧核苷酸连接而成的长链(双链结构较稳定) RNA是由一条核糖核苷酸连接而成的(单链结构不稳定、易变异)24. DNA、RNA各含
9、有的4种碱基,但组成二者的碱基种类不同。25.DNA、RNA多样性体现在碱基的排列顺序上,遗传信息由碱基决定。 26. 糖类分子都是由C/H/O三种元素构成的, 因多数氢原子和氧原子之比为1:2,故 又称“碳水化合物”。27. 糖类两大功能:主要能源物质细胞的构成物质28. 组成脂质的主要化学元素是C/H/O有些还有P/N,脂质分子中氧含量少、氢含量多,通常不溶于水,溶于脂溶性有机溶剂,如:丙酮、氯仿、乙醚等。(脂质不是大分子物质)分类分布功能单糖不能水解的糖类六碳糖果糖植物细胞葡萄糖是生命活动所需要的主要能源物质,能直接被细胞吸收,被形容为“生命的燃料”半乳糖动物细胞葡萄糖(C6H12O6)
10、动、植物细胞五碳糖核糖组成RNA脱氧核糖组成DNA二糖必须水解成单糖才能被细胞吸收水解后能够产生两分子单糖。蔗糖(一个果糖和一个葡萄糖组成)甘蔗和甜菜水解为单糖,作为能源物质都能提供能量麦芽糖(由两个葡萄糖组成)发芽的小麦等谷粒乳糖(一个半乳糖和一个葡萄糖组成)人和动物的乳汁多糖生物体内的糖类绝大多数以多糖形式存在(葡萄糖为多糖的基本单位)淀粉(最常见多糖)可通过淀粉酶分解为麦芽糖粮食作物的种子,植物的变态茎或根植物细胞重要的储能物质(暂时)糖原肝糖原:动物肝脏中动物细胞中重要的储能物质(暂时)肌糖原:动物肌肉中纤维素植物细胞壁、植物茎秆和枝叶细胞壁的主要成分,支持保护细胞糖类的分类种类元素功
11、能脂肪(不是大分子物质)C/H/O脂肪是细胞内良好的储能物质(永久),还具有保温的作用。分布在内脏器官周围的脂肪还具有缓冲和减压的作用磷脂C/H/O/P/N是构成细胞膜的重要成分,也是构成多种细胞器膜的重要成分固醇(小分子物质)胆固醇C/H/O构成动物细胞膜的重要成分,还参与血液中脂质的运输性激素促进人和动物生殖器官的发育以及生殖细胞的形成维生素D促进人和动物肠道对钙的吸收。脂质的分类29. 水在细胞的各种化学成分中含量最多。生物体含水量变化:生物体种类不同,含水量不同不同的生长发育期,含水量不同器官不同,含水量不同。30. 水在细胞中以两种形式存在:一部分水与细胞内的其他物质相结合,叫做结合
12、水(不容易散失) 细胞中绝大部分的水以游离的形式存在,可以自由流动,叫做自由水(容易蒸发)31. 水的功能:水是细胞内的良好溶剂自由水 细胞内的许多生物化学反应也都需要有水的参与(新陈代谢) 多细胞生物体的绝大多数细胞,必须浸润在以水为基础的液体环境中。 水可以运输营养物质和把细胞产生的废物运输到排泄器官或者直接排出体外。 水构成细胞内的重要物质 结合水32. 自由水和结合水在一定的条件下可以转换。34. 细胞中大多数无机盐以离子的形式存在,也有以分子形式存在的,无机盐是构成细胞内重要的化合物。碘:构成甲状腺激素的重要成分之一缺碘:成人:大脖子病 儿童:呆小症 过多:甲亢35. 无机盐作用:细
13、胞内某些复杂化合物的重要组成成分(Mg组成叶绿素分子;Fe组成血红蛋白分子) 维持细胞的渗透压和酸碱平衡 维持细胞和生物体的正常生命活动第三章1. 细胞膜主要由脂质(50%)和蛋白质(40%)组成,还有少量糖类(2%10%)。2. 功能越复杂的细胞膜,蛋白质的种类和数量越多。3. 细胞膜的功能:将细胞与外界环境分隔开 控制物质进出细胞 进行细胞间的信息交流。受体接受信号的细胞(信息交流:1.化学物质:激素 2.细胞膜接触 3.通道)(细胞膜的控制作用是相对的。)4. 植物细胞在细胞膜的外面还有一层细胞壁,它的化学成分主要是纤维素和果胶。细胞壁对植物细胞有支持和保护作用5. 在细胞质中,线粒体、
14、叶绿体、内质网、高尔基体、核糖体、溶酶体等,统称为细胞器。除细胞器外,还有呈胶质状态的细胞基质:由水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶(大多数酶属于蛋白质,有催化作用)等组成6. 细胞基质功能:活细胞进行细胞代谢的主要场所7. 分离细胞器的方法:差速离心法(使用高速离心机)8. 真核细胞中有维持细胞形态、保持细胞内部结构有序性的细胞骨架(由蛋白质纤维组成) 名称分布功能双层膜结构线粒体动植物细胞细胞进行有氧呼吸发主要场所,是细胞的“动力车间”能量转换:有机物 热能 化学能线粒体基质:水、无机盐、酶、有机物、DNA、RNA叶绿体植物细胞(叶肉细胞幼茎皮层细胞)绿色植物细胞进行光合作用的
15、场所,是植物细胞的“养料制造车间”“能量转换站”能量转换:光能化学能叶绿体基质:水、无机盐、有机物、酶、DNA、RNA单层膜结构内质网动植物细胞细胞内蛋白质合成和加工,脂质合成的“车间”高尔基体动植物细胞对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”动物细胞:与分泌物形成有关植物细胞:与细胞壁形成有关(合成多糖);“交通枢纽”溶酶体动植物细胞内含有多种水解酶,是“消化车间”,能分解衰老损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。“酶仓库”液泡植物细胞可以调节植物细胞内环境,维持渗透压,保持细胞坚挺(渗透压:水浓度低浓度高)细胞液:无机盐、糖类、蛋白质、色素无膜结构中心体动物和
16、某些低等植物细胞(团藻)与细胞的有丝分裂有关由两个中心粒组成。核糖体动植物细胞(有的附着在内质网上,有的游离在细胞质中)生产蛋白质的机器核酸(RNA)、蛋白质8. 能在光学显微镜下看到细胞器:叶绿体、线粒体、液泡 9. 有些蛋白质是在细胞内(附着在内质网的核糖体)合成后、分泌到细胞外起作用的这类蛋白质叫做分泌蛋白。10. 常见分泌蛋白:消化酶抗体一部分激素(蛋白质激素)11. 分泌蛋白的合成和运输:观察方法:同位素标记法。12. 细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。(生物膜的组成成分和结构很相似)13. 生物膜功能:细胞膜功能许多重要化学反应都在生物膜上进行。(其他化学反应
17、在细胞基质和细胞器) 14. 除高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。15.细胞核的功能:(1)细胞核是遗传信息库 (2)细胞核是细胞代谢和遗传的控制中心16. 细胞核与细胞质的关系:互相依存,统一整体。细胞只有保持完整性才能正常地完成各项生命活动。(1) 核膜:双层膜,把核内物质与细胞质分开(2) 染色质:主要由DNA和蛋白质组成,DNA是遗传信息的载体 (遗传信息:碱基/脱氧核苷酸的排列顺序。)(3) 核仁:与某种RNA的形成以及核糖体的形成有关(4) 核孔:实现核质之间频繁的物质交换和信息交流(具有选择性) (某些大分子物质如:蛋白质、RNA进出
18、的通道,DNA无法进出)注:遗传信息遗传物质17. 18.19. 模型类型:概念模型、数学模型、物理模型(实物或图画形式)20. 代谢旺盛的细胞核孔数目多;蛋白质合成旺盛的细胞核仁体积大。21. 大分子物质通过核孔进出细胞核,因此穿过的膜层数为0层。22. 沃森和克里克制作的著名的DNA双螺旋结构模型就是物理模型。23. 细胞是基本的生命系统,各组之间分工合作成为一个整体,使生命活动能够在变化的环境中自我调控、高度有序地进行。细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。第四章1. 渗透装置条件:半透膜膜两侧具有浓度差2. 渗透现象:水分子由多到少,浓度由低到高。3. 渗透作用
19、:水分子(溶剂分子)透过半透膜的扩散称为渗透作用。4. 动物细胞失水和吸水(哺乳动物成熟红细胞)半透膜浓度差注:生理盐水浓度:0.9%氯化钠溶液细胞状态细胞膜相当于一层半透膜外界溶液浓度 细胞质的浓度皱缩 细胞液浓度质壁分离与细胞壁分离基本不变变小若已质壁分离,则复原;否则无影响与细胞壁紧贴不变/恢复原状=若已质壁分离,则复原;否则无影响与细胞壁紧贴不变/恢复原状注:过度质壁分离会导致失水过多、过快而细胞死亡无法复原若使用硝酸钾溶液,则细胞能发生质壁分离并能自动复原。因为钾离子和硝酸根离子可被细胞吸收,使细胞液浓度增大,细胞渗透吸水若使用醋酸溶液则细胞不发生质壁分离及复原现象,因为醋酸能杀死细
20、胞使原生质层失去选择透过性。6. 植物细胞的吸水方式:渗透吸水(有大液泡,成熟的植物细胞)吸胀吸水(无大液泡细胞如:根冠细胞)7. 有关半透膜的误区:半透膜两侧的水分子是进行双向运动当半透膜两侧溶液达到平衡时,是指两侧的水分子运动达到平衡,而两侧浓度不一定相等,两侧的液面高度也不一定相同。8. 植物细胞发生质壁分离的原因和表现 (1) 原因:内因:原生质层具有选择透过性。细胞壁伸缩性小于原生质层伸缩性。 外因:外界溶液浓度大于细胞液浓度(2) 表现:宏观上:植物由坚挺萎蔫 微观上:质壁分离:液泡(大小)细胞液颜色(浅深)原生质层与细胞壁分离。9. 细胞的吸水和失水是水分子顺相对含量梯度运输的过
21、程。10. 人体甲状腺滤泡上皮细胞具有很强的摄取碘的能力,可逆相对含量梯度吸收碘。11. 不同微生物对不同矿物质的需要量不同,在吸收上具有选择性。12. 活细胞细胞膜和其他生物膜都是选择透过性膜,可以让水分子自由通过,一些离子和小分子也可以通过。13. 方法现象结论19世纪末欧文顿对植物细胞的通透性进行实验脂溶性物质更容易通过细胞膜膜是由脂质组成的(假说)20世纪初对哺乳动物红细胞的膜进行化学分析。膜的主要成分是脂质和蛋白质1925年两位荷兰科学家用丙酮从人的红细胞中提取脂质,将其在空气水的界面上铺展成单分子层単分子层的面积为红细胞表面积的两倍细胞膜中的脂质分子必然排列为连续的两层。1959年
22、罗伯特森用电子显微镜观察细胞膜细胞膜呈暗亮暗的三层结构。所有生物膜都是由蛋白质脂质蛋白质的三层构成,是一种静态的统一结构。1970年用绿色荧光染料标记小鼠细胞;红色荧光染料标记人细胞将两种细胞融合,开始一半发绿色荧光另一半发红色荧光,在37下经过40分钟,两种颜色荧光均匀分布细胞膜具有流动性1972年桑格、尼克森提出流动镶嵌模型14.磷脂在空气水界面上铺展成単分子层。15.(注:糖蛋白是一种物质,糖被是一种结构生物膜的选择透过性由蛋白质体现除糖蛋白外,细胞膜表面 还有糖类和脂质分子结合成的糖脂。)16. 17. 物质通过简单的扩散作用进出细胞,叫做自由扩散。进出细胞的物质借助载体蛋白的扩散,叫
23、做协助扩散。从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。18. 细胞结构特点:具有一定流动性 表现:变形虫的变形运动、细胞的融合、胞吐。 细胞功能特点:选择透过性 原因:某些离子和分子不能透过细胞膜的磷脂双分子层。 与细胞膜上载体蛋白的专一性有关。(注:流动性是生物膜的结果特点,是选择透过性的基础)19.跨膜方式影响因素自由扩散细胞膜内外的物质的浓度差协助扩散细胞膜内外物质的浓度差细胞膜上载体蛋白的数量和种类主动运输载体蛋白:载体蛋白有特异性和饱和现象能量:凡能影响细胞内产能的因素均能影响主动运输,如氧气浓度、温度等。20.
24、通道蛋白:一类跨越细胞膜磷脂双分子层的蛋白质。包含两大类:水通道蛋白和离子通道蛋白。第五章1. 细胞中每时每刻都进行着许多化学反应,统称为细胞代谢。场所:细胞中 实质:细胞内各种化学反应总称。意义:细胞生命活动的基础。2. 分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。3. 同无机催化剂相比,酶降低活化能的作用更显著,因而催化效率更高。(加热促进分解原理:使分子得到能量)4. 由于酶的催化作用,细胞代谢才能在温和条件下快速进行。5. 酶本质的探究过程:化学本质绝大多数是蛋白质少数是RNA合成原料氨基酸核糖核苷酸合成场所核糖体细胞核(主要)来源一般活细胞中均能产生生理功能具有
25、生物催化功能具有特性专一性,高效性,需要适宜的pH、温度等(1) 高效性:酶的催化效率大约是无机催化剂的1071013倍,使细胞代谢快速进行(2) 专一性:每一种酶只能催化一类或一种化学反应。使细胞代谢有条不紊地进行 6. 影响酶促反应的因素:(1)温度、pH(影响酶的活性) (2)酶的浓度:反应速率随酶浓度的升高而加快 (3)底物浓度:随底物浓度增加,反应速率加快。7. 过酸、过碱或温度过高,会使酶的空间结构遭到破坏,使酶永久失活。8. ATP:三磷酸腺苷的英文缩写,直接给细胞生命活动提供能量的有机物。结构简式:APPPA:腺苷:由核糖和腺嘌呤组成 P:磷酸基团 高能磷酸键(水解时释放能量多
26、达30.54kJ/mol)9. ATP结构特点:(1)高能量是细胞内的一种高能磷酸化合物。(水解时释放能量超过25kJ/mol都称为高 能化合物) (2)在有关酶的催化作用下,远离腺苷的高能磷酸键易水解,释放出大量能量。10. ATP与ADP的转换:时刻不停地发生并处于动态平衡之中。(不可逆的过程)注:ATP在细胞内含量并不高,但与ADP地转换非常快速 11. ATP是细胞内流通的能量“通货”:能量通过ATP分子在吸能和放能反应之间循环流通。元素组成:C/H/O/N/P与核算元素组成相同 12. 细胞呼吸是指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过
27、程。细胞呼吸可分为有氧呼吸和无氧呼吸两种类型。13. 有氧呼吸是指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程。14. 有氧呼吸和无氧呼吸的比较有氧呼吸无氧呼吸不同点条件需氧不需氧场所细胞质基质(第一阶段)线粒体(第二、三阶段)细胞质基质分解程度葡萄糖被彻底分解葡萄糖分解不彻底产物二氧化碳、水乳酸或酒精;和二氧化碳能量释放大量能量少量能量相同点反应条件需要酶和适宜温度本质氧化分解有机物,释放能量,生成ATP供生命活动所需过程第一阶段从葡萄糖到丙酮酸完全相同意义为生物体各项生命活动提供能量15.有氧呼吸和无氧呼吸过程(大部
28、分高等植物、酵母菌)马铃薯块茎、玉米胚脊椎动物肌细胞、乳酸菌(1)ATP:2mol (2)ATP:2mol (3)ATP:34mol (有氧呼吸过程)(2)消耗的O2 与生成的CO2 体积相等(3)有氧呼吸中H2O既是反应物,又是生成物,生成的水中的氧元素全部来源于O2 (4)不同生物无氧呼吸的产物不同,是由于催化反应的酶不同。16.影响细胞呼吸的外界因素:(1)温度:通过影响酶的活性影响呼吸速率,与温度影响酶催化效率的曲线特征一致 应用:低温储存蔬菜、水果,大棚蔬菜栽培过程中夜间适当降温,降低细胞呼吸减少有机物消耗。(2) O2浓度:对于无氧呼吸,氧气浓度越高,抑制作用越强,当氧气达到一定值
29、时,被完全抑制。 对于有氧呼吸,在一定范围内随着氧气浓度增加,有氧呼吸速率增强,但增加到一定值时, 有氧呼吸速率不再增加(3)生物含水量的多少:在一定范围内,呼吸作用强度随含水量的增加而增大。17.细胞呼吸原理的应用促进无氧呼吸用酵母菌酿酒抑制无氧呼吸包扎伤口用透气纱布稻田排水促进有氧呼吸用醋酸杆菌生产食醋用谷氨酸棒状杆菌生产味精松土慢跑18. 光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。 色素功能:吸收可见光,用于光合作用。19. 叶绿素a和叶绿素b主要吸收蓝紫光(多)和红光,胡萝卜素和叶黄素主要吸收蓝紫光。20. 实验:绿叶中色素的
30、提取和分离注意事项(1) 原理:提取:绿叶中的色素能够溶解在有机溶剂无水乙醇中 分离:色素在层析液中的溶解度不同(纸层析法)溶解度高的在滤纸上扩散地快,反之则慢。(2) 二氧化硅和碳酸钙要一起加入,二氧化硅有助于研磨地更充分,碳酸钙可防止研磨中色素被破坏。(3) 将滤纸条的一端剪去两角,防止层析液在滤纸条边缘扩散速度过快。(4) 不能让滤液细线触及层析液,防止色素溶解在层析液中。(5) 不能用滤纸,要用单层尼龙布(或脱脂棉),因为滤纸会吸附色素,降低滤液中色素的含量。(6) 试管口塞棉塞,防止溶剂挥发,并充分溶解色素。叶绿体是进行光合作用的场所。它内部的巨大膜表面上,不仅分布着许多吸收光能的色
31、素分子,还有许多进行光合作用所必需的酶21. 叶绿体一般呈扁平的椭球形或球形,叶绿体内众多的基粒和囊体类,极大地扩展了受光面积22. 恩格尔曼实验:(1) 巧妙之处:实验材料选择水棉和好氧细菌:水棉的叶绿体呈螺旋式带状,便于观察;用好氧细菌可以 确定氧气释放的部位。 没有空气的黑暗环境:排除氧气和光的干扰。 用极细的光束点状照射:叶绿体上可分为获得光照和无光照的部位,相当于一组对照实验 进行黑暗(局部光照)和完全暴露在光下的对照实验:明确实验结果完全是由于光照引起。(2) 结论:叶绿体是进行光合作用的场所 O2是由叶绿体释放的。23.光合作用探究历程科学家实验过程实验结论1771年普利斯特利密
32、闭玻璃罩+绿色植物蜡烛 不易熄灭小白鼠 不易死亡+植物可以更新空气1779年英格豪斯500多次植物更新空气实验只有在阳光照射下才能成功,植物体只有绿叶才能更新空气。1845年梅耶根据能量转化和守恒定律光合作用把光能转化成化学能储存起来1864年萨克斯绿叶暗处理(饥饿处理)实验组脱色处理碘蒸气处理 曝光处呈深蓝色光合作用的产物除氧气外还有淀粉(自身对照)(饥饿处理使叶片中的营养物质消耗掉,说明光是光合作用的必要条件。)1941年鲁宾和卡门用同位素标记法:光合作用释放的氧气全部来自水。(互相对照)20世纪40年代卡尔文探明了CO2中的碳在光合作用中转化成有机物中碳的途径,即卡尔文循环。(2) 暗反
33、应场所:叶绿体基质中条件:ATP、H、多种酶能量:ATP中活泼的化学能 糖类等有机物中稳定地化学能24. 光合作用的过程(1)光反应场所:类囊体薄膜 条件:光、色素、酶 能量:光能 ATP中活泼的化学能卡尔文循环注:H与呼吸作用的H不同,但都具有很强的还原性;反应中C5的含量基本不变。光反应与暗反应相互制约:光反应为暗反应提供ATP、H;暗反应为光反应提供ADP+Pi光反应是暗反应的基础,暗反应是光反应的继续,两者互相独立又同时进行,互相制约又密切联系。25. 光合作用的强度:植物在单位时间内通过光合作用制造糖类的数量(即有机物的数量为细胞干重,不能用鲜重表示) 累积糖类的数量:净光合量即从外
34、界吸收的二氧化碳的含量。(间接反映光合作用强度)呼吸速率表示方法:将植物置于黑暗中,实验容器中CO2增加量O2 减少量或有机物减少量,即表示呼吸速率。两者关系:在有光条件下,植物同时进行光合作用和细胞呼吸,实验容器中O2增加量CO2减少量或有机物增加量,称为表光合速率,而植物真正的光合速率=(净)表光合速率+呼吸速率一昼夜有机物的累积量(CO2 量表示)=白天吸收CO2量晚上呼吸释放CO2量26. 调控光合作用强度方法:控制光照强弱、温度高低、二氧化碳浓度27. 衡量指标:通过测定一定时间内原料消耗或产物生成的数量。28. 外界影响因素:空气中二氧化碳浓度、土壤中水分的多少、光照的长短与强弱以
35、及光的成分、温度的高低。29. 光合作用的净产量:光下CO2的吸收量、O2的释放量和葡萄糖的累积量 光合作用总产量:光合作用CO2的消耗量、O2的产生量和葡萄糖的制造量30. 化能合成作用:利用体外环境中的某些无机物氧化时所释放的能量来制造有机物 例:硝化细菌,能利用氧化NH3、HNO2 释放的化学能将 CO2、 H2O合成为糖类,供自身利用。31.(1)自养生物:能将无机物合成为有机物的生物。 (2异养生物:只能利用环境中现成的有机物来维持自身生命活动的生物。例:人、动物、真菌、大多数细菌第六章1. 细胞大小与物质运输关系实验结论:琼脂块的表面积和体积之比随着琼脂块的增大而减小 NaOH扩散
36、的体积和整个琼脂块体积之比随着琼脂块增大而减小 细胞体积越大,其相对表面积越小,细胞地物质运输效率越低。2. 限制细胞大小的主要原因:细胞表面积与体积的关系细胞核的控制能力。3. 细胞增殖:(1)方式:以分离的方式进行增殖。真核细胞的分裂方式有:有丝分裂(体细胞)、无丝分裂 (蛙的红细胞)、减数分裂(生殖细胞) (2)过程:细胞增殖包括物质准备和细胞分裂整个连续的过程。 (3)意义:细胞增殖是重要的细胞生命活动,是生物体生长、发育、繁殖、遗传的基础。4. 有丝分裂具有周期性:连续分裂的细胞从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。 (包括两个阶段:分裂间期(起点)和分裂期)
37、注:洋葱表皮细胞和精细胞没有分裂周期。(1) 分裂间期:为分裂起进行活跃的物质准备,完成DNA分子的复制和有关蛋白质合成,细胞有适度生长 G1期:RNA、蛋白质合成(时间最长) S期:DNA复制 G2期:少量RNA、蛋白质合成(2) 分裂期前期中心粒向细胞两极移动中心粒周围发出无数条放射状的星射线中心粒之间的星射线形成了纺锤体。中期纺锤丝牵引染色体运动,使其着丝点排列在赤道板上染色体形态较稳定,数目较清晰,便于观察后期着丝点分裂,姐妹染色单体分开,染色体数目加倍子染色体在纺锤体的牵引下移向细胞两极末期细胞膜从细胞中部向内凹陷细胞缢裂成两个子细胞动物细胞植物细胞时期图像变化特征前期染色质丝螺旋缠
38、绕,缩短变粗,称为染色体细胞两极发出纺锤丝,形成纺锤体核仁逐渐解体,核膜逐渐消失染色体散乱分布于纺锤体中央中期纺锤丝牵引染色体运动,使其着丝点排列在赤道板上染色体形态较稳定,数目较清晰,便于观察后期着丝点分裂,姐妹染色单体分开,染色体数目加倍子染色体在纺锤体的牵引下移向细胞两极末期染色体变成染色质丝,纺锤丝消失核膜核仁出现,形成两个新细胞核赤道板位置出现细胞板,逐渐扩展为细胞壁注:间期DNA数量加倍;后期染色体数量加倍。5. 与有丝分裂器有关的细胞器:(1)核糖体:间期进行有关蛋白质的合成 (2)中心体:前期发出星射线形成纺锤体 (3)高尔基体:末期形成植物细胞壁 (4)线粒体:为细胞分裂提供能量6. 有丝分裂意义:在细胞的亲代和子代之间保持了遗传性状的稳定性。7. 无丝分裂:细胞核先延长,核的中部向内凹进,缢裂成为两个细胞核,接着整个细胞从中部缢裂成两部分,形成两个子细胞(没有出现染色体和纺锤丝的变化。)8. 在个体发育(胚胎发育和胚后发育)中,由一个或一种细胞增殖产生的后代在形态、结构和生理功能上发生稳定性差异的过程,叫做细胞分化。(注:胚胎发育期分化程度最大)9. 细胞分化