低温等离子体介绍(共5页).docx

上传人:飞****2 文档编号:13851704 上传时间:2022-05-01 格式:DOCX 页数:5 大小:20.27KB
返回 下载 相关 举报
低温等离子体介绍(共5页).docx_第1页
第1页 / 共5页
低温等离子体介绍(共5页).docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《低温等离子体介绍(共5页).docx》由会员分享,可在线阅读,更多相关《低温等离子体介绍(共5页).docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上低温等离子体介绍基本概念等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。等离子体的分类1、按等离子体焰温度分:(1)高温等离子体:温度相当于108109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。(2)低温等离子体:热等离子体:稠密高压(1大气压以上),温度103105K

2、,如电弧、高频和燃烧等离子体。冷等离子体:电子温度高(103104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。2、按等离子体所处的状态:(1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。(2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。什么是低温(冷)等离子体?冰升温至0会变成水,如继续使温度升至100,那么水就会沸腾成为水蒸气。随着温度的上升,物

3、质的存在状态一般会呈现出固态液态气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组成的混合物(蜡烛的火焰就处于这种状态)。我们把物质的这种存在状态称为物质的第四态,即等离子体态(plasma)。因为电离过程中正离子和电子总是成对出现,所以等离子体中正离子和电子的总数大致相等,总体来看为准电中性。反过来,我们可以把等离子体定义为:正离子和电子的密度大致相等的电离气体。从刚才提到的微弱的蜡烛火焰,我们可以看到等离子体的存在

4、,而夜空中的满天星斗又都是高温的完全电离等离子体。据印度天体物理学家沙哈(MSaha,1893-1956)的计算,宇宙中的99.9%的物质处于等离子体状态。而我们居住的地球倒是例外的温度较低的星球。此外,对于自然界中的等离子体,我们还可以列举太阳、电离层、极光、雷电等。在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,诸如荧光灯、霓虹灯、电弧焊、电晕放电等等。在自然和人工生成的各种主要类型的等离子体的密度和温度的数值,其密度为106(单位:个m3)的稀薄星际等离子体到密度为1025的电弧放电等离子体,跨越近20个数量级。其温度分布范围则从100K的低温到超高温核聚变等离子体的10

5、8-109K(110亿度)。 温度轴的单位eV(electron volt)是等离子体领域中常用的温度单位,1eV=11600K。通常,等离子体中存在电子、正离子和中性粒子(包括不带电荷的粒子如原子或分子以及原子团)等三种粒子。设它们的密度分别为ne,ni,nn,由于准电中性,所以电离前气体分子密度为nenn。于是,我们定义电离度=ne/(ne+nn),以此来衡量等离子体的电离程度。日冕、核聚变中的高温等离子体的电离度都是100%,像这样=1的等离子体称为完全电离等离子体。电离度大于1%(10-2)的称为强电离等离子体,像火焰中的等离子体大部分是中性粒子(Ti , TeTn。我们把这样的等离子

6、体称为低温等离子体(cold plasma)。当然,即使是在高气压下,低温等离子体也可以通过不产生热效应的短脉冲放电模式如电晕放电(corona discharge)、介质阻挡放电(Dielectric Barrier Discharge, DBD)或滑动电弧放电(Glide Arc Discharge or Plasma Arc)来生成。大气压下的辉光放电技术目前也已成为世界各国的研究热点。可产生大气压非平衡态等离子体的机理尚不清楚,在高气压下等离子体的输运特性的研究也刚刚起步,现已形成新的研究热点。低温等离子体的产生方法电晕放电 介质阻挡放电电晕放电(Corona Discharge)气体

7、介质在不均匀电场中的局部自持放电。是最常见的一种气体放电形式。在曲率半径很大的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电。发生电晕时在电极周围可以看到光亮,并伴有咝咝声。电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。电场继续加

8、强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。此后又重复开始下一个电离及带电粒子运动过程。如此循环,以致出现许多脉冲形式的电晕电流,电晕放电可以在大气压下工作,但需要足够高的电压以增加电晕部位的电场。一般在高压和强电场的工作条件下,不容易获得稳定的电晕放电,亦容易产生局部的电弧放电(arc)。为提高稳定性可将反应器做成非对称(asymmetric)的电极形式(如下图所示)。电晕放电反应器的设计主要参考电源的性质而有所不同,有直流电晕放电(DC corona)和脉冲式(pulsed corona)电晕放电。利用电晕放电可以进行静电除尘、污水处理、空气净化等。地面上的树木

9、等尖端物体在大地电场作用下的电晕放电是参与大气电平衡的重要环节。海洋表面溅射水滴上出现的电晕放电可促进海洋中有机物的生成,还可能是地球远古大气中生物前合成氨基酸的有效放电形式之一。针对不同应用目的研究,电晕放电是具有重要意义的技术课题。介质阻挡放电(Dielectric Barrier Discharge, DBD)介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为104106。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充满某种工作气体,并将其中

10、一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中。介质阻挡放电通常是由正弦波型(sinusoidal)的交流(alternating current, AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至击穿(breakdown

11、)最后发生放电。当供給的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown voltage; avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。若继续提高供給电压,当两电极间的电场大到足夠使气体分子进行非弹性碰撞时,气体将

12、因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值时及帕邢(Paschen)击穿电压时,便产生許多微放电丝(microdischarge)导通在两极之间,同时系統中可明显观察到发光(luminous)的現象此时,电流会随着施加的电压提高而迅速增加。在介质阻挡放电中,当击穿电压超过帕邢(Paschen)击穿电压时,大量随机分布的微放电就会出现在间隙中,这种放电的外观特征远看貌似低气压下的辉光放电,发出接近兰色的光。近看,则由大量呈现细丝状的细微快脉冲放电构成。只要电极间的气隙均匀,则放电是均匀、漫散和稳定的。这些微放电是由大量快脉冲电流细丝组成,而每个电流细丝在放电空间和时间上都是

13、无规则分布的,放电通道基本为圆柱状,其半径约为0.10.3mm,放电持续时间极短,约为10100ns,但电流密度却可高达0.11kA/cm2,每个电流细丝就是一个微放电,在介质表面上扩散成表面放电,并呈现为明亮的斑点。这些宏观特征会随着电极间所加的功率、频率和介质的不同而有所改变。如用双介质并施加足够的功率时,电晕放电会表现出“无丝状”、均匀的兰色放电,看上去像辉光放电但却不是辉光放电。这种宏观效应可通过透明电极或电极间的气隙直接在实验中观察到。当然,不同的气体环境其放电的颜色是不同的。虽然介质阻挡放电已被开发和广泛的应用,可对它的理论研究还只是近20年来的事,而且仅限于对微放电或对整个放电过

14、程某个局部进行较为详尽的讨论,并没有一种能够适用于各种情况DBD的理论。其原因在于各种DBD的工作条件大不相同,且放电过程中既有物理过程,又有化学过程,相互影响,从最终结果很难断定中间发生的具体过程。由于DBD在产生的放电过程中会产生大量的自由基和准分子,如OH、O、NO等,它们的化学性质非常活跃,很容易和其它原子、分子或其它自由基发生反应而形成稳定的原子或分子。因而可利用这些自由基的特性来处理VOCs,在环保方面也有很重要的价值。另外,利用DBD可制成准分子辐射光源,它们能发射窄带辐射,其波长覆盖红外、紫外和可见光等光谱区,且不产生辐射的自吸收,它是一种高效率、高强度的单色光源。在DBD电极结构中,采用管线式的电极结构还可制成臭氧O3发生器。现在人们已越来越重视对DBD的研究与应用。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁