交通工程学题库11版计算题(共14页).doc

上传人:飞****2 文档编号:13809813 上传时间:2022-05-01 格式:DOC 页数:14 大小:539.50KB
返回 下载 相关 举报
交通工程学题库11版计算题(共14页).doc_第1页
第1页 / 共14页
交通工程学题库11版计算题(共14页).doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《交通工程学题库11版计算题(共14页).doc》由会员分享,可在线阅读,更多相关《交通工程学题库11版计算题(共14页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上、已知行人横穿某单行道路所需的时间为9秒以上,该道路上的机动车交通量为410辆/小时,且车辆到达服从泊松分布,试问:从理论上说,行人能横穿该道路吗?为什么?如果可以横穿,则一小时内行人可以穿越的间隔数有多少?(提示:e=2.718,保留4位有效数字)。解:从理论上说,行人不能横穿该道路。因为该道路上的机动车交通量为:Q=410Veh/h,则该车流的平均车头时距8.7805s/Veh,而行人横穿道路所需的时间t为9s以上。由于(8.7805s)9s的数量,即可得到行人可以穿越的间隔数。按均匀到达计算,1h内的车头时距有410个(3600/8.7805),则只要计算出车头

2、时距9s的概率,就可以1h内行人可以穿越的间隔数。负指数分布的概率公式为:,其中t=9s。车头时距9s的概率为:=0.35881h内的车头时距9s的数量为:=147个答:1h内行人可以穿越的间隔数为147个。、某信号控制交叉口周期长度为90秒,已知该交叉口的某进口道的有效绿灯时间为45秒,进口道内的排队车辆以1200辆/小时的饱和流量通过交叉口,其上游车辆的到达率为400辆/小时,且服从泊松分布,试求:1)一个周期内到达车辆不超过10辆的概率;2)周期到达车辆不会两次停车的概率。解:题意分析:已知周期时长C090 S,有效绿灯时间Ge45 S,进口道饱和流量S1200Veh/h。上游车辆的到达

3、服从泊松分布,其平均到达率400辆/小时。由于在信号控制交叉口,车辆只能在绿灯时间内才能通过。所以,在一个周期内能够通过交叉口的最大车辆数为:Q周期GeS451200/360015辆。如果某个周期内到达的车辆数N小于15辆,则在该周期不会出现两次停车。所以只要计算出到达的车辆数N小于10和15辆的概率就可以得到所求的两个答案。在泊松分布中,一个周期内平均到达的车辆数为: 辆根据泊松分布递推公式,可以计算出:,所以: ,答:1)一个周期内到达车辆不超过10辆的概率为%;2)周期到达车辆不会两次停车的概率为。、某交叉口信号周期为40秒,每一个周期可通过左转车2辆,如左转车流量为220辆/小时,是否

4、会出现延误(受阻)?如有延误,试计算一个小时内有多少个周期出现延误;无延误则说明原因。(设车流到达符合泊松分布)。解:1、分析题意:因为一个信号周期为40s时间,因此,1h有3600/40=90个信号周期。又因为每个周期可通过左转车2辆,则1h中的90个信号周期可以通过180辆左转车,而实际左转车流量为220辆/h,因此,从理论上看,左转车流量呈均匀到达,每个周期肯定都会出现延误现象,即1h中出现延误的周期数为90个。但实际上,左转车流量的到达情况符合泊松分布,每个周期到达的车辆数有多有少,因此,1h中出现延误的周期数不是90个。2、计算延误率左转车辆的平均到达率为:=220/3600 辆/s

5、,则一个周期到达量为:m=t=40*220/3600=22/9辆只要计算出一个周期中出现超过2辆左转车的概率,就能说明出现延误的概率。根据泊松分布递推公式,可以计算出:, ,1h中出现延误的周期数为:90*0.4419=39.77140个答:肯定会出现延误。1h中出现延误的周期数为40个。、在一单向1车道的路段上,车辆是匀速连续的,每公里路段上(单向)共有20辆车,车速与车流密度的关系符合Greenshields的线性模型,阻塞的车辆密度为80辆/公里,自由流的车速为80公里/小时,试求:1)此路段上车流的车速,车流量和车头时距;2)此路段可通行的最大流速;3)若下游路段为单向辆车道的道路,在

6、这段路上,内侧车道与外侧车道的流量之比为1:2,求内侧车道的车速。假设车速与车流密度成仍符合Greenshield的线性模型,每个车道的阻塞的车流密度为80辆/公里,自由流的车速为80公里/小时。解:1) Greenshields 的速度密度线性关系模型为: 由已知可得:=80 kmh,= 80辆/km,K=20辆/km V=60 kmh 流量密度关系: Q=K = KV = 2060 =120辆/h 车头时距:=3s2) 此路段可通行的最大流速为:= 40 km/h3) 下游路段内侧车道的流量为:=1200= 400 辆/h 代入公式:Q=K 得:400= K80(1-) 解得:= 5.4辆

7、/km,=74.6辆/km 由:可得:= 74.6km/h,=5.4km/h答:1) 此路段上车流的车速为60 kmh,车流量为120辆/h,车头时距为3s。2) 此路段可通行的最大流速为40 km/h3) 内侧车道的速度为74.6km/h或5.4km/h。、汽车在隧道入口处交费和接受检查时的饱和车头时距为3.6秒,若到达流量为900辆/小时,试按M/M/1系统求:该入口处的平均车数、平均排队数、每车平均排队时间和入口处车数不超过10的概率。 解:按M/M/1系统:辆/小时,辆/s=1000辆/小时1,系统是稳定的。 该入口处的平均车辆数:辆 平均排队数:辆 平均消耗时间:3.6 s/辆 每车

8、平均排队时间: = 36-3.6 = 32.4 s/辆 入口处车辆不超过10的概率:答:该入口处的平均车辆数为9辆,平均排队数为8.1辆,每车平均排队时间为32.4 s/辆,入口处车辆不超过10的概率为0.34。、设有一个停车场,到达车辆为50辆/小时,服从泊松分布;停车场的服务能力为80辆/小时,服从负指数分布;其单一的出入道能容纳5辆车。试问:该出入道是否合适?(计算过程保留3位小数)解:这是一个M/M/1的排队系统。由于该系统的车辆平均到达率:= 50 Veh/h,平均服务率:= 80 Veh/h,则系统的服务强度为:=/= 50/80 = 0.625 5) = 1- =1-0.94 =

9、 0.06。答:由于该出入道超过5辆车的概率较大(大于5%),因此该出入道不合适。、某主干道的车流量为360辆/小时,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距为10秒,求:1)每小时有多少可穿越空档?2)若次要道路饱和车流的平均车头时距为5秒,则次要道路车辆穿越主要道路车辆的最大车辆数为多少? (本次复习不作要求。如果同学们有兴趣可以参考教材P112的例题8-6)。、某交叉口进口道,信号灯周期时间T=120秒,有效绿灯时间G=60秒,进口道的饱和流量为1200辆/小时,在8:30以前,到达流量为500辆/小时,在8:309:00的半个小时内,到达流量达到650辆/小时,9:

10、00以后的到达流量回复到8:30以前的水平。车辆到达均匀且不考虑车辆停车位置向上游延伸而产生的误差。试求:1)在8:30以前,单个车辆的最大延误时间,单个车辆的平均延误时间、停车线前最大排队车辆数、排队疏散与持续时间。2)在8:30以后,何时出现停车线前最大排队?最大排队数为多少?3)在9:00以后,交通何时恢复正常(即车辆不出现两次排队)?解:1) 在8:30以前 绿灯刚变为红灯时到达的那辆车的延误时间最大:=T-G=120-60=60s 单个车辆的平均延误时间:=0.5(T-G)=0.5(120-60)=30s 红灯时段,车辆只到达没有离去,因此在红灯刚变为绿灯时排队的车辆数最多,为:Q=

11、(T-G)=500=9 辆 由 , ,得排队疏散时间:s 排队持续时间: 2) 在8:30以后,一个周期120s内,到达的车辆数为: 辆 由于车辆只能在有效绿灯时间60s内通过,所以一个周期离开的车辆数为: 辆 一个周期内有22-20=2 辆车出现两次排队,在8:30到9:00之间的最后一个周期内红灯刚变为绿灯时,停车线前出现最大排队,最大排队数为: 辆 3) 在9:00以后,停车线上进行二次排队的车辆有30辆,而在一个在周期内,到达车辆为:辆假设在9:00后第N个周期内恢复正常,可得: 30+17N=20N解得: N=10 答:1) 单个车辆的最大延误时间为60s,单个车辆的平均延误时间为3

12、0s,停车线前最大排队车辆数为9辆,排队疏散时间为46.3s,持续时间为106.3s。 2) 在8:30以后,到9:00之间的最后一个周期内红灯刚变为绿灯时,停车线前出现最大排队,最大排队数为:50辆。 3) 在9:00以后,交通在第10个周期内恢复正常。、设信号交叉口周期C130秒,有效红灯R60秒,饱和流量S=1800辆/小时,到达流量在红灯前段22.5秒为918辆/小时,在周期内其余时段为648辆/小时,停车密度为100辆/公里,v-k服从线性模型,试用车流波动理论计算排队最远处上的位置。解:当信号变为红灯时,车队中的头车开始减速,并逐渐在停车线后停下来,这就产生一个象征停车的交通波(压

13、缩波)从前向后在车队中传播。设车队原来的速度为,密度为,标准化密度为=。波传过后,速度为,密度为,标准化密度=1,由: ,可得: 1-(+) 假设t=0时,信号在x=(停车线)处变红灯,则在t=22.5s时,一列长度为 的车队停在之后。又=100辆/公里,22.5s内车辆到达车辆数为:停车长度为:=0.06 km =解得: =9.18 km/h =-9.18 km/h又 即: -9.18=解得: =70.6辆/公里由Q=KV得: V=9.2 km/h S=VT= =95.8km 排队总长度为:L=0.06+95.8=155.8km=155.8m答:排队最远处上的位置为离停车线155.8m处。、

14、已知某高速公路入口处只有一个收费窗口工作,该收费窗口的服务能力为1200辆/小时,服从负指数分布,收费窗口前的车辆到达率为1000辆/小时,且服从泊松分布。假定某时刻该窗口前已有10辆车正在排队。试求:1)该系统车辆的平均排队长度;2)该系统车辆排队的平均消耗时间;3)该系统车辆的平均等待时间;4)该时段车辆排队的消散时间。解:从已知条件可以看出,这是一个M/M/1系统。车辆到达率为:辆/小时辆/s; 离开率:辆/s;,所以该系统是稳定的。 (5分)1)该系统车辆的平均排队长度:辆。(1分)或者: 该入口处的平均车辆数:辆平均排队长度:辆2)该系统车辆排队的平均消耗时间: S(1分)或者: s

15、/辆3)该系统车辆的平均等待时间: S(1分)或者: s/辆4) 由于该时段的消散能力为:12001000200辆/小时,(1分)而该时刻在窗口前正在排队有10辆车。(1分)因此,车辆排队的消散时间:t=10/2000.05小时180 S (1分)答:1)该系统车辆的平均排队长度为辆;2)该系统车辆排队的平均消耗时间为18 S;3)该系统车辆的平均等待时间为15 S;4) 由于该时段的消散能力为180 S(1分)1、已知某公路上自由流速度Vf为80km/h,阻塞密度Kj为100辆/km,速度和密度的关系符合格林希尔茨的线性关系。试问:该路段上期望得到的最大交通量是多少?所对应的车速是多少?解:

16、根据交通流总体特性:,其中:,所以,最大交通量为:辆/h对应的车速为临界车速: km/h。12、道路瓶颈路段的通行能力为1300辆/h,高峰时段1.69h中到达流量为1400辆/h,然后到达流量降到650辆/h,试利用连续流的排队与离驶理论计算。(1)拥挤持续时间tj。(2)拥挤车辆总数N。(3)总延误D。(4)tj内每车平均延误时间d。解:由题意可知:(1)通过上面有拥挤持续时间tj:()(2)拥挤车辆总数N高峰小时的车流量Q1(1400辆/h)通行能力Q2 (1300辆/h),出现拥挤情况。因此,车辆总数N=()(3)总延误D高峰小时过后,车流量Q3=650辆/h通行能力1300辆/h,排

17、队开始消失。疏散车辆的能力为:()因此消散所需时间为:()总出现的阻塞时间 ()因此,总延误D:()(4)tj内每车平均延误时间d:=3613、假定某公路上车流密度和速度之间的关系式为:V=35.9ln(180/k),其中速度V以km/h计,密度K以辆/km计,试计算:(1)车流的阻塞密度和最佳密度?(2)计算车流的临界速度?(3)该公路上期望的最大流量?解:由题意可知:初始的情况为V=35.9ln(180/k)(1)交通流公式有当V=0时, ,(辆/km),则(辆/km)。所以车流的阻塞密度为辆/km,最佳密度为辆/km。(2)格林柏的对数模型为:所以:V=35.9ln(180/k)= ,(

18、)车流的临界速度为。(3)公路上期望的最大流量为()14、在一条长度为24公里的干道起点断面上,于6分钟内观测到汽车100辆通过,设车流是均匀连续的且车速V=20公里/小时,试求流量(q)、车头时距(ht)、车头间距(hs)、密度(K)以及第一辆汽车通过此干道所需时间(t)。解:由交通流理论可知 车流量位:()车头时距:(s/辆)车头间距: (m/辆)车辆密度:(辆/km)第一辆汽车通过此干道所需时间:()15、某路段10年的统计,平均每年有2起交通事故。试问:此路段明年发生事故5起的概率是多少?又某交叉口骑自行车的人,有1/4不遵守红灯停车的规定,问5人中有2人不遵守交通规定的概率是多少?解

19、:由题意可知:(1)由公式,得,此路段明年发生事故5起的概率是0.027。(2)(人)得,5人中有2人不遵守交通规定的概率是0.224。16、某交叉口信号周期为40秒,每一个周期可通过左转车2辆,如左转车流量为220辆/小时,是否会出现延误(受阻),如有延误,试计算占周期长的百分率,无延误则说明原因(设车流到达符合泊松分布)。解:由题意可知:起初的时间为,一个周期内平均通过左转的车辆数:辆 2辆因此,会出现延误。由公式,得, 延误占周期长的百分率为0.429。17、已知某交叉口的定时信号灯周期长80s,一个方向的车流量为540辆/h,车辆到达符合泊松分布。求:(1)计算具有95%置信度的每个周

20、期内的来车数;(2)在1s,2s,3s时间内有车的概率。解:由题意可知:(1)计算具有95 % 置信度的每个周期内的来车数:周期为(),(辆/h),车辆到达符合泊松分布:(辆)(2)公式在1s时间内,()得,在2s时间内,()得,在3s时间内,(辆)得,在1s,2s,3s时间内有车的概率分别为:0.1393、0.2592、0.3624。18、车流在一条单向双车道公路上畅通行驶,速度为100km/h,由于突发交通事故,交通管制为单向单车道通行,其通行能力为1200辆/h,此时正值交通高峰,单向车流量为2500辆/h。在发生交通事故的瓶颈段的车速降至5km/h,经过1.0h后交通事故排除,此时单向

21、车流量为1500辆/h。试用车流波动理论计算瓶颈段前车辆排队长度和阻塞时间。解:由题意可知:(1)计算瓶颈段前车辆排队长度无阻塞能畅通行驶时,其密度为:()由于突发交通事故,其通行能力为Q2=1200辆/h,而现在要求通过的单向车流量为2500辆/h,因此,必然会出现拥挤状况。其密度为: ()将Q1、Q2、K1、K2代入波速传播方程,得:()由上式计算可知,出现一个反方向传播,其速度为6.05km/h。由于此反向波持续了1.0h(即排除事故时间),故此处单车道排队长度为:()。(2)计算阻塞时间已知高峰时段后的车流量Q3=150012002=2400,排队消散。由于在高峰时段内排队的车辆数为:

22、()(三)环境影响评价的原则而高峰时段后单位时间内公路上能疏散的车辆数(消散能力)为:()根据工程、系统生命周期和评价的目的,安全评价分为三类:安全预评价、安全验收评价、安全现状评价。消散时间:()(一)环境影响经济损益分析概述出现阻塞的时间()(1)规划和建设项目环境影响评价。19、车流在一条单向双车道公路上畅通行驶,速度为90km/h,其通行能力为每车道1000辆/h,单向车流量为1500辆/h。由于施工,交通管制为单向单车道通行,在交通管制段车速降至10km/h,经过1.0h后施工完成,公路恢复单向双车道通行。试用车流波动理论计算施工段前车辆排队长度和阻塞时间。在可行性研究时应进行安全预

23、评价的建设项目有:(解题方法同上)(二)安全预评价范围20、一个停车库出口只有一个门,在门口向驾驶员收费。假定车辆到达服从泊松分布,顾客平均到达率为120辆/小时,收费平均持续时间为15秒,负指数分布,试求:(1)收费口没车接受服务的概率;(2)排队系统中的平均消耗时间。(4)是否满足环境功能区划和生态功能区划标准。解:由题意可知:以森林为例,木材、药品、休闲娱乐、植物基因、教育、人类住区等都是森林的直接使用价值。(1)收费口没车接受服务的概率由于是单一收费口,所以这是一个M/M/1的排队系统。(),() ,说明该系统稳定。 。(6)对建设项目实施环境监测的建议。(2)排队系统中的平均消耗时间:(二) 环境影响经济损益分析的步骤()专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁